앰플리튜드

전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)

Team MAXONOMY 2024.11.14

전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)

전환율(Conversion Rate)이란?


전환율이란, 마케팅 활동이나 특정 행동 유도(Call to Action)에 반응하여 원하는 행동을 취한 사용자의 비율을 의미합니다. 여기서 전환으로 간주되는 행동은 비즈니스 목표에 따라 다양할 수 있으며 제품 구매, 회원가입, 구독 등이 대표적인 전환입니다. 전환율을 구하는 공식은 다음과 같습니다.


전환율 = (전환 수 / 방문자 수) x 100


전환율은 캠페인, 웹사이트, 판매 채널의 효과에 대한 중요한 인사이트를 제공하여, 마케팅 전략을 수립하는 데 유용하게 사용할 수 있습니다. 높은 전환율은 사용자들이 대체로 긍정적인 경험을 하고 있음을 나타내며, 낮은 전환율은 개선의 여지가 있음을 시사합니다







전환율 계산 방법


앞서 설명 드렸듯, 전환율은 전환 수에 방문자 수를 나누어 구할 수 있는데요. 방문자가 따로 없는 경우는 '방문자 수' 대신 '기회 수'를 넣어 계산할 수 있습니다. 전환율을 구하는 상세한 과정은 다음과 같습니다.


  1. 전환 이벤트 확인: 전환으로 측정할 구체적인 행동을 정합니다. 예를 들어 구매, 회원가입, 구독, 특정 링크 클릭 등이 전환 이벤트가 될 수 있습니다.
  2. 데이터 수집: 전환 수와 특정 기간 동안의 방문자 수(혹은 전환될 기회의 수)를 수집합니다.
  3. 공식 적용: 숫자를 공식에 대입합니다. 예를 들어 1,000명의 방문자 중 60번의 전환이 발생했다면 다음과 같이 계산할 수 있을 것입니다.


전환율 = (60 / 1,000) x 100 = 6%










전환율이 중요한 이유


비즈니스에서 가장 중요한 것 중 하나는 결과를 확인하는 것입니다. 어떤 결과가 있었는지, 그 결과가 비즈니스에 어떤 의미를 가지는지 이해하고 개선점을 찾아 적용해야 합니다. 전환율(Conversion Rate)은 비즈니스가 성공하고 있는지, 구체적으로 어떤 모습으로 성공하고 있는지 잘 보여주는 지표입니다. 전환율을 추적하고 관리한다면 다음과 같은 이점을 얻을 수 있습니다.


  1. 마케팅 캠페인의 효율성 측정: 전환율을 통해 마케팅 캠페인이 얼마나 효과적인지 평가할 수 있습니다.
  2. 수익 흐름의 건강 상태 파악: 전환율을 통해 수익 창출 경로가 잘 작동하고 있는지 확인할 수 있습니다.
  3. 판매 퍼널에서 개선이 필요한 부분 발견: 전환율은 고객이 구매로 이어지는 과정에서 약점이나 개선이 필요한 부분을 식별하는 데 도움을 줍니다.
  4. 마케팅 채널 및 캠페인 전략에 대한 의사 결정: 전환율을 분석하면 어떤 채널과 캠페인이 가장 효과적인지에 대한 판단을 할 수 있어, 더 나은 전략 수립이 가능합니다.
  5. 투자 대비 수익(ROI)을 극대화할 수 있도록 마케팅 캠페인을 최적화: 전환율을 높임으로써 ROI를 높일 수 있는 방향으로 캠페인을 조정하고 최적화할 수 있습니다.


이처럼 전환율은 마케팅 활동의 성과와 수익성을 높이는 데 핵심적인 역할을 합니다.







어떤 전환 이벤트(Conversion Event)를 설정할 수 있을까?


전환 이벤트(conversion event)는 가치 있다고 여겨지는 고객의 모든 행동이나 활동을 의미합니다. 제품 구매, 회원가입, 구독이 대표적이지만, 비즈니스 목표나 시장, 제품 유형 등에 따라 다양하게 정의될 수 있습니다.

전환 이벤트를 설정할 때는 비즈니스 또는 마케팅 캠페인의 구체적인 목표 및 핵심 성과 지표(KPI)에 맞춰 설정하는 것이 좋습니다. 쉽게 말해 성공적인 결과로 이어지는 사용자 행동을 선택해야 하죠. 실제 실무에서 자주 사용되는 전환 이벤트의 예시는 다음과 같습니다.


  • 실제 구매 완료(주로 이커머스 서비스)
  • 회원 가입
  • 소프트웨어 체험판 및 e북을 다운로드
  • 앱 다운로드 및 실행
  • 뉴스레터 구독
  • 랜딩 페이지나 특정 기사 페이지에서 일정 시간 이상 머무는 행동
  • 정기적으로 사이트에 방문하는 행동
  • 소셜 미디어 게시물에 좋아요를 누르거나 공유하는 행동
  • 광고를 클릭하여 사이트에 방문하는 행동


이처럼 전환 이벤트는 다양한 사용자 행동을 추적할 수 있으며, 비즈니스 성과를 높이는 데 중요한 역할을 합니다.








이상적 전환율


이상적 전환율은 산업, 전환 이벤트의 유형, 사이트 트래픽의 품질, 타겟 리드의 정확성에 따라 크게 달라질 수 있으며, 일괄적으로 적용되는 기준은 없습니다. 이 외에도 제품, 타겟 고객, 시장 경쟁력, 사이트 품질 등 다양한 요소가 전환율 수치에 영향을 줍니다.


일반적으로는, 목표 성과 및 기대치를 기준으로 전환율의 좋고 나쁨을 평가할 수 있습니다. 종종 벤치마크 데이터를 참고 지표로 사용하기도 합니다. 예를 들어, 이커머스 기업의 평균적인 전환율은 약 2-3% 수준입니다. 5% 이상의 전환율을 달성한 기업이 있다면, 전환율 지표가 굉장히 좋다고 볼 수 있겠죠.


전환율은 단순히 1회성 측정에서 끝나는 것이 아닌 지속적으로 추적하고 개선하는 것이 중요하며, 이를 통해 점진적인 성장과 최적화를 목표로 해야 합니다. '최고의 전환율'은 비즈니스의 목표와 업계 표준에 부합하면서도 지속적인 개선이 있어야 합니다.







전환율 최적화(CRO) 방법


전환율 최적화(CRO)는 전환을 증가시키기 위해 제품(서비스)이나 캠페인을 개선하는 활동을 의미합니다. 주로 사용자 행동을 분석하고, 제목, 이미지, CTA 버튼과 같은 요소를 테스트하는 등 데이터 기반의 조정이 필요합니다. 때문에 일반적으로는 A/B 테스트, 사용자 조사, 데이터 분석, 반복 실험 등의 방법을 사용하여, 사용자 여정을 최적화합니다. 이를 통해 전환율 지표를 개선할 수 있으며, 궁극적으로 수익, 리드 및 기타 KPI를 증가시키는 효과가 있습니다. 다음은 실제 실무에서 적용할 수 있는 전환율 최적화 방법입니다.


  1. 고객 또는 사용자 페르소나(persona) 만들기: 고객 페르소나를 통해 타겟 고객의 욕구, 필요, 문제를 더 잘 이해하고 이를 바탕으로 전환율을 개선할 수 있습니다.
  2. A/B 테스트: 랜딩 페이지, 마케팅 콘텐츠, 제품 설계 등의 여러 버전을 테스트하여 어떤 버전이 더 성과가 좋은지 파악하는 방법입니다. 성과가 더 좋은 선택지를 찾아 적용하고, 이 과정으로 반복하여 캠페인과 제품을 고객이 원하는 형태에 맞게 지속 개선할 수 있습니다.
  3. 명확한 행동 유도(call-to-action, CTA): 웹사이트의 각 페이지에는 방문자에게 원하는 행동을 명확히 안내하는 매력적인 CTA가 필요합니다. 해당 CTA를 개선하여 전환율을 직접적으로 개선할 수 있죠. 앞서 설명드린 페르소나, A/B테스트 기법을 활용할 수 있습니다.
  4. 페이지 로딩 속도와 고객 경험 개선: 로딩이 느리거나 사용자 경험이 좋지 않은 웹사이트는 방문자의 전환을 저해할 수 있습니다.
  5. 소셜 프루프(social proof) 활용: 소셜 프루프는 고객 리뷰, 후기, 수상 경력, 소셜 미디어 공유 등을 포함하며, 사이트의 신뢰성과 신뢰감을 높이는 방법입니다.







Amplitude를 활용한 전환율 극대화


Amplitude는 제품 분석 업계의 리더로서, 단순히 데이터를 분석하는 것에서 그치지 않고, 이를 실제 전략으로 전환하는 방법을 제시해줍니다. Amplitude의 데이터 분석 및 사용자 행동 추적 도구를 활용해 전환율을 극대화해보세요. Amplitude는 전환율을 극대화할 수 있는 다양한 기능과 노하우를 제공합니다. 비즈니스의 모든 영역에 대한 상세한 데이터를 제공하고, 고객의 행동을 분석하고, 어떤 요소가 고객의 관심을 끄는지에 대한 데이터를 수집할 수 있습니다.










콘텐츠 더 읽어보기

logo

팀맥소노미

YOUR DIGITAL MARKETING HERO

비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요

관련 글 보기

Amplitude Feature Experiment:  데이터 기반 실험의 시작

Amplitude Feature Experiment: 데이터 기반 실험의 시작

실험이 중요한 이유디지털 서비스를 운영하다 보면 다음과 같은 질문과 마주하게 됩니다. “이 버튼을 바꾸면 클릭률이 더 높아질까?” “새로운 기능을 모든 사용자에게 바로 공개해도 될까?” “프리미엄 사용자에게만 실험적으로 먼저 공개해보고 싶은데, 어떻게 관리하지?”대부분 경우 직감이나 내부 회의로 결정을 내리지만, 그 결과가 실제로 사용자 경험과 KPI에 긍정적인 영향을 주는지 알기 어렵습니다. 이로 인해 향후에 추가적인 실험 테스트를 수행하기 어려운 환경이 조성되어 버리기도 합니다.또한, 서비스를 운영하다보면, 서비스의 성장을 위해 여러 고민과 의사결정이 필요한 순간이 옵니다.✅ 새로운 기능을 모든 사용자에게 배포하기엔 위험할 때✅ 디자인이나 UI를 바꾸고 그 효과를 정확히 측정하고 싶을 때✅ 특정 사용자 그룹에게만 실험적으로 기능을 보여주고 싶을 때✅ 실험 결과를 클릭률, 전환율, 리텐션율 등의 지표로 분석하고 싶을 때따라서, 개발단의 리소스를 최소화하면서, 실제 사용자 데이터 기반의 결과 분석이 가능한 실험 체계를 도입할 필요가 있습니다. Amplitude Experiment는 고객에게 제공하는 기능 on/off 토글링부터 A/B 테스트, 점진적 릴리즈, 결과 분석까지 하나의 워크플로우 안에서 지원함으로써 "기능 실험 → 결과 측정 → 의사결정"을 오차없이 빠르게 수행할 수 있도록 도와줍니다.Amplitude Experiment에서는 다음 두 가지 방식으로 실험을 구성할 수 있습니다.Feature ExperimentWeb Experiment이름만 보아서는 비슷해 보이지만, 실제 사용 목적과 운영 방식에는 뚜렷한 차이가 있습니다. 이번 포스팅에서는 이중 Feature Experiment에 대해 집중적으로 알아보겠습니다.Feature Experiment: 기능 중심 실험Feature Experiment는 코드 기반으로 운영되는 실험 방식입니다. 개발자가 직접 고객에게 보여줄 화면을 만들거나 신규 기능을 구현한 후에 이것을 일부 고객들에게만 노출하고 원하는 효과를 보았는지 확인하고자 할 때 활용합니다.개발단에서는 변경된 화면이나 기능을 적용하고 예외 처리를 추가하여 특정 사용자에게만 노출될 수 있도록 구현하고, 실무자는 원하는 고객군과 모수 비율을 Amplitude 콘솔에서 언제든 수정하여 테스트를 수행 해 볼 수 있습니다.개발단 기능- 화면 구성- 조건 처리실무단 기능- 모수집단 선정, 비율 선택- 전환 목표 지정, 분석 방식 선정- 테스트 시작, 종료, 기간 선정- 실험 분석 결과 확인- Analytics로 추가 심화 분석 수행예시로 이해하는 Feature Experiment 활용1) 신규 기능 가설 세우기어느 날, 개발자가 추천 알고리즘 로직 개선 작업을 완료 하였습니다. 이 알고리즘을 서비스에 적용하면 굉장한 효과를 보여줄 것이라 기대하고 있지만, 바로 운영계에 적용하기에는 어떤 사이드 이펙트가 있을지 예상할 수 없었습니다. 가령 잘못된 상품 추천으로 고객에게 안 좋은 경험을 제공하면 이탈로 이어질 수 있죠.따라서, 전체 고객이 아닌, VIP 고객 중 10%에게만 새 알고리즘을 적용하고 클릭률, 구매율을 측정하기로 하였습니다. 결과 데이터가 나머지 고객들에 비해 5%이상 증가한다면 전체 사용자에게 확대 배포하는 거죠.2) 개발단 작업처음 실험을 진행하는 것이라면 Amplitude Experiment SDK를 적용하는 작업이 필요합니다. 신규 추천 알고리즘은 이미 개발 완료된 상황이고 SDK 적용은 큰 시간이 소모되지 않기 때문에 거의 바로 실험 진행이 가능합니다.(Amplitude Experiment SDK 라이브러리 탑재 및 초기화 후 고객마다 서로 다르게 제공하고자 하는 위치에서 조건문(if)을 구성)Android 적용법1. 라이브러리 추가 (build.gradle에 dependencies 추가)2. 초기화 (Application단에서 초기화)3. 현재 사용자의 experiment 관련 정보 수신4. 고객이 보유한 flag 값에 따라 제공 여부 결정( 새로운 추천 알고리즘이 제공될 10%의 VIP 고객은 "on"으로, 그 외 고객들은 모두 "off"로 적용)3) Amplitude 설정(Experiment UI 구성)3-1) Deployment 생성하기운영하는 서비스는 여러 환경으로 구분되어 있습니다.개발계(development) / 내부 QA 테스트 수행 환경(staging) / 운영 환경(production)Android, iOS, Web 등 제공 플랫폼 환경실험을 진행하고자 할 때, 특정한 환경에서만 진행하실 수도 있고, 여러 환경에서 동시에 진행해 보실 수도 있을 겁니다. 이 때, 어떤 환경에 실험을 배포할 것인지를 정의할 수 있도록 "Deployment"라는 작업이 필요합니다.하나의 프로젝트 내에서 배포할 환경마다 각각의 Deployment를 생성해주시면, 실험을 진행할 때, 이 실험을 어떤 환경에만 배포할지 지정할 수 있습니다.Experiment > Deployments 화면에서 제공하는 “Create Deployment”를 클릭하고 배포할 환경의 이름과 프로젝트를 선택하면 바로 Deployment 생성이 가능합니다.3-2) Experiment 생성하기이제 기본적인 세팅은 모두 완료 되었으니 실험을 만들어 볼 수 있습니다!Experiment > Experiments 메뉴에서 새로운 실험명과 사용할 키 값을 정하신 후 생성(Create)합니다.4) 실험 설계4-1) 목표 설정하기실험을 만들 때 가장 먼저 생각해야 할 부분은 "목표" 설정 입니다. 실험을 한다는 것은 결국, 무언가를 더 좋게 만들기 위해서이기 때문에, 반드시 “이 실험을 통해 무엇이 좋아지기를 기대하는가?”에 대한 기준이 필요하며, 그것이 바로 목표 설정입니다. 우리가 설정한 목표를 달성했는지 여부를 가지고 이번 실험의 성공 여부를 파악해 보실 수 있겠지요.목표는 기존에 만들어 두었던 지표를 선택하실 수도 있고, 원하는 목표를 새롭게 생성하실 수도 있습니다.Unique, Event Total, Conversion 등 분석에서 활용해 보셨던 다양한 지표 옵션을 기반으로 목표 설정이 가능한데, 이번 실험에서는 클릭율이 5% 이상 증가하는 것을 목표로 잡았기 때문에, "화면 진입 > 버튼 클릭"으로의 전환율이 5% 이상 상승하는 것을 목표로 설정했습니다.4-2) 대안(Variant) 등록하기비교 테스트를 진행할 때, 대안은 하나일 수 있지만 여러 개가 있을 수도 있습니다. "내가 테스트하고 싶은 기능의 버전은 몇 가지이며, 각각 어떤 차이가 있을까?" 테스트 하고자 하는 대안의 수 만큼 Add a Variant 옵션으로 추가하여 정의할 수 있습니다. (단, 너무 많은 Variant는 분석을 어렵게 하므로 2~4개 이내를 권장합니다.)각 Variant의 Value 값은 SDK에서 분기 처리에 사용(e.g. variant.value)되므로 개발단에서 미리 지정하신 값이 있을 경우, 해당 값으로 기입되어야 하며, 미리 정의되어 있지 않았다면 여기에서 정의하시는 값으로 개발단의 코드 작업이 수행되어야 합니다.※Value 값이 수정될 경우, 앱의 재배포가 필요하므로 처음 생성 시 Amplitude에서 허용하는 명명규칙(숫자, 영문, 언더스코어, 하이픈만 허용)을 참고하시어 향후 변경하지 않을 값으로 지정이 필요합니다.4-3) 고객 그룹(Targeting) 정의하기[Audience]실험에 활용할 대안을 등록했다면, 누구를 대상으로 실험을 진행할 것인지 모수 집단을 선택하실 수 있습니다. All Users를 선택하여 전체 고객을 모수 집단으로 선정할 수 있으며, Target Users를 선택하여 특정 모수집단을 Segment로 정의할 수 있습니다.[Distribution]선정한 모수 집단을 각 대안에 어느 정도 비율로 할당 할것인지 지정할 수 있습니다. 기본 옵션인 evenly distribute로 동일한 비율로 지정하는 것을 권장 드리며, 원하실 경우 Customize 옵션으로 수동 설정이 가능합니다.(control로 할당되는 고객들은 실험에 참여는 하지만 실제로는 변경된 대안 UI가 노출되지 않는 그룹으로써, 대조군의 역할을 수행합니다.)[Rollout]지정하신 모수 집단 전체를 대상으로 실험을 수행하실 수도 있으나 그 중 일부를 대상으로만 진행하는 것도 가능합니다. Rollout 설정을 통해 전체 모수 집단 중 몇 %에 해당하는 고객들을 대상으로 실험을 진행할 것인지 범위를 지정할 수 있습니다.(Control vs. Rollout: control에 포함된 고객은 실험에 포함되어 향후 결과 분석 시 대조군 역할을 하지만, Rollout에서 제외된 고객은 실험 자체에 포함되지 않으므로 결과 또한 추적되지 않습니다.)5) 전달 구성5-1) Flag & Evaluation 정의Flag는 실험을 식별하는 고유 식별자로써, 실험을 생성하시는 시점에 key 항목으로 기입한 정보를 확인하실 수 있으며, 실험 시작 전까지는 변경이 가능합니다. 이 값은 SDK에서 실험 정보 요청에 사용(e.g.FLAG_KEY) 되므로 개발단에서 미리 정하신 값이 있다면 그 값으로, 없다면 여기에서 정의된 값으로 개발단의 코드 작업이 수행되어야 합니다.Evaluation Mode는 고객이 어떤 대안에 해당 되는지를 어디에서 계산할 것인지 선택하는 항목입니다. 일반적으로는 Amplitude에 수집된 정보를 실시간으로 확인하여 결정되나, 실시간 검토 방식은 통신 상의 약간의 딜레이(0.1~1초)가 발생하므로, 고객에게 즉각적으로 노출되어야 하는 UI에 대해서는 로컬에서 계산하는 방식을 선택하실 수도 있습니다.5-2) 배포 환경(Deployment) 선택지금까지 작성한 실험을 어떤 환경에 배포 할 것인지를 선택합니다. 특정 플랫폼이나 개발환경에만 적용하고자 하실 경우, 해당하는 deployment만 선택하여 배포가 가능합니다.6) 실험 시작모든 세팅을 완료했다면, 우측 상단 버튼을 이용하여 각 플랫폼 별로 적용할 수 있는 샘플 코드를 확인할 수 있습니다. 개발 담당자에게 해당 정보를 전달하여 적용을 요청할 수 있습니다.실험을 고객들에게 배포하기 전, 미리 등록해 둔 테스터만을 대상으로 선행적으로 배포가 가능하며, 예약 실행이나 feature flag만 활성화하고 실험 분석은 수행하지 않는 등 여러 옵션을 정의해 보실 수 있습니다.모든 사항의 확인이 완료되었다면, 최종적으로 Start Experiment를 클릭하여 실험 시작이 가능합니다. 실험을 종료할 때에는 초기 버전으로 롤백을 할 것인지, 아니면 특정 대안( Variant )으로 적용할 것인지 선정하여 실험을 마칠 수 있습니다.실험이 진행되는 동안 발생한 실험 참여(Assigentment), 실험 노출(Expouse) 및 목표로 잡은 정보들은 모두 고객별 프로필에 저장되므로 이를 기반으로 심층 분석(Analytics)을 바로 수행해 볼 수 있습니다. 또한, 처음 목표로 잡았던 것 이외에도 각 그룹별로 어떠한 변화가 있었는지 수집된 데이터를 기반으로 분석이 가능합니다.실험과 분석을 하나의 플랫폼 안에서실험과 데이터 분석은 이제 더 이상 따로 작업할 필요가 없습니다. 기존 A/B 테스트 도구들이 단순히 실험을 “실행”하는 데 집중했다면, Amplitude Feature Experiment는 실험 설계부터 분석, 최종 반영까지 추가적인 개발단 작업없이 한 번에 처리할 수 있는 실험 플랫폼 체계를 제공합니다.CUPED, Sequential Testing, Bonferroni 등 실험의 정확도를 높이는 기능이 기본으로 탑재되어 있어, 적은 트래픽으로도 빠르게 유의미한 결론을 얻을 수 있으며, Amplitude Analytics와 완벽히 연결되어 언제든 전환율,리텐션, 코호트 분석 등 심층적인 결과 분석을 바로 이어나갈 수 있습니다.또한 클라이언트 배포 없이, 서버-사이드 실험 연동을 지원하므로 고객들에게 끊김없는 실험 환경 제공이 가능합니다. 제품의 성과를 빠르게 검증하고, 그 결과를 정확히 해석해 다음 의사결정으로 이어가고 싶다면, Amplitude Feature Experiment는 더없이 강력한 선택이 될 것입니다.Feature Experiment 활용에 도움이 필요하나요?팀 맥소노미 Amplitude 도입문의 바로가기 콘텐츠 더 읽어보기A/B테스트 개념과 데이터 분석 방법🔍Amplitude 실험 전략 가이드북A/B테스트 마케팅 실전 가이드북

✦퍼스트 파티(First-party) 데이터✦ 왜 중요하며, 어떻게 수집해야 할까👀

✦퍼스트 파티(First-party) 데이터✦ 왜 중요하며, 어떻게 수집해야 할까👀

퍼스트 파티 데이터(First-party data)란, 기업의 웹 사이트 또는 모바일 앱과 같이 기업에서 소유하고 있는 채널을 통해 수집하는 고객의 정보입니다. 이메일 주소를 양식에 입력하는 것처럼, 고객이 직접 공유하는 데이터와 사이트 내 또는 인앱에서의 행동 데이터가 포함됩니다.본 게시글에서는 퍼스트 파티 데이터를 수집하여 개인화된 고객 경험을 만들고 리텐션을 개선하는 방법을 알아보겠습니다.🔎 주요 내용퍼스트 파티 데이터는 사람들이 제품 및 서비스와 상호 작용할 때 수집되는 정보입니다.고객으로부터 직접 수집한 데이터는, 세컨드 파티 또는 써드 파티 데이터 보다 제품 개선에 유용합니다.고객이 플랫폼에서 양식을 작성하거나 다른 프로세스를 완료할 때 등 고객과의 다양한 접점에서 퍼스트 파티 데이터를 수집하십시오.퍼스트 파티 데이터를 활용하여 고객 여정을 개선하고, 고객 경험을 개인화하며, 디지털 마케팅을 효율적으로 진행할 수 있습니다.퍼스트 파티 데이터란 무엇인가요?퍼스트 파티 데이터는 고객이 핵심 제품과 상호작용하는 이유에 대한 정보를 수집하는 것입니다.  반면에, 세컨드 파티 및 써드 파티 데이터는 오디언스(audience)와 외부 플랫폼 간의 상호작용으로부터 얻을 수 있습니다.퍼스트 파티 데이터에는 크게 두 가지 종류가 있습니다.엔티티(entity) 데이터: 사용자의 신원(나이, 위치, 성별 등) 및 취향(즐겨 보는 영화 장르 등)에 대한 정보이벤트 데이터(또는 행동 데이터): 사용자가 플랫폼에서 수행하는 행동(클릭, 마우스 오버, 장바구니에 담기 등)에 대한 정보개개인에 대한 퍼스트 파티 데이터를 수집하고, 그들을 그룹(또는 코호트)로 정렬하여 분석할 수 있습니다. 예를 들어, 플랫폼을 사용하는 동일한 조직의 사용자 그룹이 있을 수 있습니다. 그렇다면 코호트 분석을 통해 그들을 하나의 그룹으로 분석할 수 있죠. 혹은 '첫 주에 알림을 활성화했거나 친구와 플레이리스트를 공유한 사용자'와 같이 사용자 행동을 기반으로 코호트를 만들 수도 있습니다.퍼스트 파티 데이터의 중요한 특징은 이 데이터가 조직에 속해 있다는 점입니다. 여러분은 이를 직접 수집하고, 저장하고, 관리하게 됩니다. 즉, 데이터를 수집하는 방법을 직접 결정함으로써, 데이터의 정확성과 합법성을 보장할 수 있습니다. 이는 세컨드 파티 및 써드 파티 데이터와의 차이점입니다.퍼스트 파티 데이터 vs 제로 파티 데이터고객이 적극적으로 공유하는 정보(설문조사, 고객 피드백 응답 등)를, 사람들은 제로 파티 데이터라고 부르기 시작했습니다. 제로 파티 데이터는 유용한 인사이트를 주지만, 고객이 직접 제출한 정보이기 때문에 부정확할 수 있습니다.예를 들어 누군가는 공포 영화 장르를 좋아한다고 응답했지만, 사실은 대부분의 시간을 로맨틱 코미디 장르를 보면서 보낼 수도 있습니다. 마찬가지로 대부분의 사용자가 '이 플랫폼을 친구나 동료에게 추천할 의향이 있나요?'라는 항목에 '매우 그렇다'라고 응답하더라도, 실제로 '친구 추천 프로그램(refer-a-friend)'을 사용하는 사람은 극히 일부에 불과합니다.이 글에서는 제로 파티 데이터를 퍼스트 파티 데이터의 한 유형으로 다룹니다. 이는 제품을 기반으로 하는 고객과의 직접적인 관계에서 비롯되며, 귀사는 이 데이터를 직접 소유하게 됩니다.퍼스트 파티 데이터 vs 세컨드 파티 데이터세컨드 파티 데이터는 소셜 미디어나 광고사 같은, 신뢰할 수 있는 파트너로부터 얻은 데이터입니다. 이 데이터는 기본적으로 다른 조직의 퍼스트 파티 데이터이고, 이것이 공유되면 여러분에게는 세컨드 파티 데이터가 되는 것이죠. 세컨드 파티 데이터를 수집했을 때의 이점은 그동안 수집한 데이터를 보완하여 더욱 큰 규모의 데이터로 만들어낼 수 있다는 것입니다.가장 흔한 시나리오는 파트너 조직이 여러분의 플랫폼 사용자일 수도 있고, 아닐 수도 있는 사용자의 데이터를 수집하여, 여러분이 해당 데이터를 활용하여 조치를 취할 수 있도록 귀사와 공유하는 것입니다. 예를 들면, 퍼블리셔는 자사의 웹사이트에 광고를 게재하고 싶은 광고주와 자사의 오디언스에 관한 퍼스트 파티 데이터를 공유할 수 있습니다.퍼스트 파티 데이터 vs 써드 파티 데이터써드 파티 데이터는 데이터 집계기(aggregator)로부터 수집하는 데이터입니다. 써드 파티 데이터 공급자들은 세컨드 파티 데이터를 그룹화 하고 정리합니다.써드 파티 데이터 셋(Data Sets)은 인구 통계학 정보, 특정 산업 종사자 등 일반적인 그룹에 대한 정보를 제공할 수 있습니다. 그러나 데이터의 수집 시기 또는 방법과 같은 데이터 원본 소스에 대한 세부 정보는 알 수 없습니다.써드 파티 데이터는 일반적으로 스노우플레이크(SnowFlake) 마켓 플레이스와 같은 온라인 플랫폼을 통해 구매할 수 있습니다. 써드 파티 데이터 공급자는 데이터 사이언티스트와 분석가가 더 많은 실시간 데이터 셋과 즉시 쿼리를 할 수 있도록 준비된 데이터 셋에 액세스할 수 있도록 데이터 교환 기능을 제공합니다. 그러나 문제는, 여러분이 구매할 수 있는 데이터라면, 경쟁사에서도 구매할 수 있겠죠. 그러니 이 데이터 셋이 귀사에 큰 경쟁 우위를 제공하지는 않습니다.써드 파티 데이터는 써드 파티 쿠키를 통해서도 얻을 수 있습니다. 데이터 집계자는 다른 조직에 일정 비용을 지불하고 쿠키를 통해 사이트 방문자를 트래킹합니다. 하지만 구글이 써드 파티 쿠키 지원을 중단할 것이라 밝히면서, 이러한 관행은 곧 종료될 예정입니다.최근 몇 년 동안 유럽 연합과 미국의 여러 주들도 데이터 수집, 데이터 개인 정보 보호, 데이터 공유에 관해 GDPR(일반 개인정보 보호법), CCPA(캘리포니아 소비자 개인정보 보호법)와 같은 더욱 엄격한 법률을 통과시켰습니다. 이러한 법적인 영향으로 인해 조직에서 데이터를 수집하고 공유하는 것이 점점 더 어려워지고 있는 실정입니다.(참고: AI 시대 속 개인정보 보호 - 1단계 인식변화)[🔖요약]  퍼스트파티 데이터 vs 세컨드 파티 데이터 vs 써드 파티 데이터퍼스트 파티(First-party) 데이터: 고객들로부터 얻을 수 있는 정보로, 귀사에서 직접 수집한 데이터와 고객들이 직접 공유하는 정보를 포함합니다.세컨드 파티(Second-party) 데이터: 데이터 파트너 또는 데이터 공급자로부터 제공되는 정보입니다.써드 파티(Third-party) 데이터:  세컨드 파티 데이터들을 그룹화하는 데이터 집계기로부터 얻을 수 있는 정보입니다.퍼스트 파티 데이터의 종류제품 내에서 수집하는 데이터는 모두 퍼스트 파티이기 때문에, 퍼스트 파티 데이터에도 다양한 유형이 있습니다. 다음은 퍼스트 파티 데이터의 주요 유형의 예시입니다.사용자 속성사용자 속성에는 사용자의 이름, 나이, 위치를 비롯하여 주소, 전화번호와 같은 개인정보 등이 포함됩니다. 사용자가 귀사의 제품에 등록하거나 양식을 작성할 때 또는 웹 분석을 통해 사용자의 속성 정보를 수집할 수 있습니다.사용자의 선호도 및 관심사퍼스트 파티 데이터 수집의 또 다른 이점은 다양한 데이터 포인트를 통해 고객의 선호도 및 관심사에 대한 정보를 파악할 수 있다는 점입니다. 예를 들어, 귀사의 플랫폼에서 하루에 3시간 이상 뷰티 튜토리얼을 시청하는 사용자는 아마도 헤어, 메이크업 제품에 관심이 있을 것이라고 파악할 수 있습니다.또는 일주일에 여러 번 청구서 템플릿을 사용하는 그룹을 발견했을 수도 있습니다. 그렇다면 그들은 청구서 템플릿이 유용하다고 생각하며, 유사한 템플릿에 관심이 있을 것이라고 가정할 수 있습니다.고객의 행동사용자의 행동 또한 퍼스트 파티 데이터입니다. 다양한 이벤트를 트래킹하고 분석함으로써, 사람들이 플랫폼과 상호작용하는 방식을 이해할 수 있습니다. 예를 들면 다음과 같습니다.사용자가 사이트의 여러 페이지에서 보내는 시간사용자가 여러 기능을 사용하는 빈도사용자가 클릭한 버튼이나 링크사용자가 완료한 프로세스(등록 또는 회원가입, 구독 업그레이드 등)코호트 분석을 사용하여 사용자를 행동에 따라(행동 코호트) 다른 그룹으로 분류할 수 있습니다. 위에서 언급했던 청구서 템플릿 예시로 살펴보면, 이러한 템플릿을 이용하는 사용자가 그렇지 않은 사용자보다 고객 생애 가치(CLV: Customer Lifetime Value)가 더 높다는 가설을 세울 수 있습니다.위의 Amplitude(앰플리튜드) 매출 LTV 차트는 청구서 템플릿을 사용하는 사용자(파란색)의 CLV가 그렇지 않은 사용자(초록색)보다 높다는 가설을 확인시켜 줍니다. 그 다음으로 해야 할 작업은 고객 여정의 초기 단계에 청구서 템플릿의 표지를 바꾸는 A/B 테스트를 실시하여 CLV를 높이는 것입니다.퍼스트 파티 데이터는 왜 중요할까요?식사를 할 때는, 식재료가 어디에서 왔는지를 아는 것이 중요합니다. 그래야 몸에 해로운 것들을 먹지 않을 수 있죠. 데이터도 마찬가지입니다. 부정확할 수 있거나 품질이 낮은 정보는 비즈니스 의사 결정에 있어 큰 피해를 초래할 수 있기 때문에 조직에 유입되어서는 안됩니다.퍼스트 파티 데이터 수집의 주요 이점은 조직에서 데이터를 수집하고, 분석하고, 활성화하는 방법을 처음부터 끝까지(end-to-end) 완벽하게 제어할 수 있다는 점입니다. 즉, 해당 데이터의 품질과 정확성을 확신할 수 있으며, 다른 파트너나 써드 파티 조직에 의존할 필요도 없습니다. 다만 모든 개인 정보 보호법 및 규정을 준수해야 하고, 데이터를 수집하기 전에 사용자로부터 적절한 동의를 얻었는지 확인해야 합니다.또한 퍼스트 파티 데이터를 활용하면 유연성을 확보할 수 있습니다. 데이터를 업데이트하고, 추가하고, 다양한 오디언스 세그먼트와 코호트를 만들어낼 수도 있습니다. 이는 다른 조직에서 정보를 얻는 경우에는 불가능한 영역입니다.마지막으로, 퍼스트 파티 데이터는 본질적으로 고객 및 제품과의 관련성이 매우 높습니다. 여러분이 수집하는 모든 인사이트는 플랫폼에 따라 다르므로, 이를 활성화하고 자사 데이터 전략을 만들어 앱과 웹 사이트를 개선할 수 있습니다.퍼스트 파티 데이터는 다음과 같이 활성화할 수 있습니다.고객 여정에서의 마찰 지점을 찾아내고 해결함으로써 고객 경험과 리텐션을 개선합니다.다양한 오디언스 및 코호트의 선호도에 맞게 제품을 조정함으로써 개인화된 경험을 만드십시오.마케팅 예측(forecasting)을 활용하여 고가치 사용자를 식별하고, 광고를 리타겟팅하거나, 획득(acquisition) 채널에 더욱 집중함으로써 마케팅 효과를 높일 수 있습니다.퍼스트 파티 데이터는 어떻게 수집해야 할까요?제품에서의 클릭, 뷰, 프로세스와 같은 이벤트를 추적하고 고객이 플랫폼과 상호 작용하도록 유도하여 퍼스트 파티 데이터를 수집할 수 있습니다. 추적할 이벤트와 수집할 데이터를 결정하기 위해서는, 먼저 고객과 그들의 제품 사용에 대한 질문 리스트를 만들어야 합니다. 그 다음 질문의 답을 찾는데 도움이 되는 이벤트와 이벤트 속성을 정의합니다. 어떤 이벤트를 추적하면 좋을지 결정하는 기준에 대한 자세한 내용은 Amplitude(앰플리튜드)의 이벤트 추적 블로그 글을 참고 하십시오. 고객으로부터 유용한 데이터를 수집할 수 있는 접점은 다음과 같습니다.사용자 등록(회원가입): 사용자가 플랫폼에 등록할 때 데이터를 수집합니다. 소셜 로그인을 통해 페이스북이나 구글과 같은 기존 계정으로 로그인할 수도 있습니다. 이를 통해 사람들이 더욱 쉽게 로그인하고 프로필을 귀사와 공유할 수 있습니다.리드 생성 양식: 더 많은 정보를 수집하려면 리드 생성 양식을 사용하여 일반적인 등록 또는 온보딩 정보보다 더 많은 세부적인 정보를 공유하도록 사용자에게 요청하십시오. 예를 들어, 고객에게 유용한 백서(Whitepaper)를 다운로드 할 수 있는 권한을 부여하고, 그 대가로 어떤 업계에 종사하고 있는지, 그 회사의 규모는 어느 정도인지 공유하도록 하는 유인책을 만들 수도 있습니다.대화형 콘텐츠: 사용자가 대화형 콘텐츠를 통해 더 많은 세부 정보를 공유하도록 유도합니다. 설문 조사나 대화형 설문(챗봇 등)과 같은 사용자를 위한 재미있는 경험을 제공하여, 사용자의 관심사와 선호도에 대한 많은 정보를 수집합니다.퍼스트 파티 데이터 관리 도구데이터를 수집, 처리 및 분석하기 위한 여러 가지 데이터 관리 플랫폼이 있습니다. 조직의 규모와 유형, 그리고 특정 데이터 요구사항에 따라 귀사에 가장 알맞은 솔루션은 달라질 수 있습니다.Amplitude (앰플리튜드)Amplitude(앰플리튜드) CDP(Customer Data Platform)를 사용하여 다양한 유형의 데이터를 수집하고 구성할 수 있습니다. CDP는 Amplitude(앰플리튜드) 분석과 완벽하게 통합되어 있으므로, 데이터를 다운스트림으로 쉽게 전송하여 마케팅 또는 제품 전략에 따라 분석하고 활성화할 수 있습니다.Amplitude(앰플리튜드)를 사용하면 데이터를 다양한 오디언스(코호트)로 세분화하여 셀프 서비스 분석을 실행하고 귀중한 인사이트를 수집할 수 있습니다. 이 플랫폼은 사용이 쉬우며, 조직이 데이터 중심으로 운영될 수 있도록 도와줍니다. 또한 데이터 사일로를 제거하고, 모든 조직의 구성원들이 데이터 인사이트에 액세스하여 업무에 활용할 수 있도록 지원합니다.기타 데이터 관리 도구Google AnalyticsMatomoSEMrushSegmentSteam콘텐츠 더 읽어보기Google 쿠키리스 연기와 퍼스트파티 데이터의 미래🍪제로파티(Zero-Party) 데이터란?[패널 토크] The all new Data-driven Marketing

🏃💨이탈률(Bounce Rate), 낮을수록 좋을까?🤔

🏃💨이탈률(Bounce Rate), 낮을수록 좋을까?🤔

대부분의 마케팅 지표는 그 의미가 명확합니다.예를 들어, '블로그의 방문자 수'라는 지표는 낮은 것보다 높은 것이 좋습니다. 반대로 '주간 뉴스 레터 구독 취소자 수'는 낮을수록 좋습니다. 이렇게 대부분의 마케팅 지표는 '높을수록 좋다' 혹은 '낮을수록 좋다'라는 명확한 평가 기준이 있습니다.그렇지만 이탈률(Bounce Rate)에는 그런 명확한 평가 기준이 없습니다. 본 포스팅에서는 이탈률을 어떻게 계산하는지, 어떻게 측정하는지, 높은 이탈률이 좋은 경우는 언제인지에 대해 다루도록 하겠습니다.✅ 키 포인트 ✅페이지 이탈이란, 방문자가 어떤 페이지에 접속한 후, '같은 사이트의 다른 페이지'를 탐색하지않고 떠나는 행위를 말합니다.이탈률은 페이지 유형 및 산업에 따라 다릅니다.이탈률에 대한 보편적인 기준은 없으며, 페이지의 맥락이 이탈률의 가장 중요한 분석 기준입니다.이탈률(Bounce Rate)이란? 🤔웹 사이트의 이탈률은 한 페이지에 접속한 후 떠나는 방문자의 비율입니다. 즉, 방문자가 한 페이지를 보고 같은 사이트의 다른 페이지를 탐색하는 대신, 뒤로 가기를 누르거나, 탭을 닫거나, 외부 링크로 옮기는 등 페이지를 떠나는 행위를 말합니다.이탈률은 웹 사이트의 전반적인 사용자 경험을 평가하는 중요한 지표입니다. 웹 사이트의 로딩이 느리거나, 디자인이 직관적이지 않는 등의 문제가 있다면, 해당 사이트의 이탈률은 높게 나타날 것입니다. 콘텐츠 역시 이탈률을 결정짓는 중요한 요소입니다. 가치 있는 콘텐츠를 제공하여 방문 목적을 충족시킨다면, 방문자를 페이지에 머물게 할 수 있을 것입니다. 하지만 이탈률이 높다고 꼭 나쁜 것만은 아닙니다. 방문자의 의문점을 효과적으로 해소해주는 콘텐츠를 제공했을 경우, 방문자가 굳이 해당 사이트의 다른 페이지까지 탐색하지 않아도 되니, 이탈률이 높게 나타날 것입니다. 이런 이유로 인한 높은 이탈률은 해당 사이트에 대한 신뢰도가 높다는 증거로 볼 수도 있습니다.반면, 이커머스 사이트의 상품 페이지 이탈률이 높다면, 문제가 있다고 볼 수 있겠죠.이탈률 계산법 🧮이탈률은 특정 기간 동안의 한 페이지 세션 수(Single-page Sessions)를 전체 세션 수(Total Sessions)로 나누어 간단히 확인할 수 있습니다.이탈률(Bounce Rate) = 한 페이지 세션 수(Single-page Sessions) / 전체 세션 수(Total Sessions)예를 들어, 클라우드 소프트웨어 업계의 트렌드를 다루는 기술 블로그를 운영하고 있다고 가정해 보겠습니다. 지난 달에 해당 웹 사이트에서 100,000개의 전체 세션이 발생하였고 그 중 특정 한 페이지 세션은 10,000개가 발생하였습니다. 이 경우 이탈률은 10%로 계산할 수 있습니다. Amplitude와 같은 디지털 분석 도구를 사용한다면, 이탈률을 자동으로 측정할 수 있습니다.이탈률 VS 종료율 🤼몇몇 사람들은 이탈률과 종료율을 구분하지 않고 사용하기도 합니다. 하지만 이 두개는 서로 다른 지표입니다. 이탈률은 한 페이지만 보고 이탈하는 방문자 수를 측정하는 반면, 종료율은 방문자가 사이트의 적어도 하나의 다른 페이지를 탐색하다가 해당 페이지를 만났을 때 떠나는 정도를 측정합니다. 예를 들어, 사용자 여정을 추적해보니 특정 페이지를 방문하면 급격하게 사이트를 이탈한다는 사실을 발견한다면, 해당 페이지의 종료율이 높다고 볼 수 있습니다. 이 경우 해당 페이지를 면밀히 살펴보고 페이지의 종료율이 높은 근본 원인을 찾아야할 것입니다.이탈률 평가 기준은? 🧐이상적인 이탈률은 얼마일까요? 평균 이탈률은 페이지 유형, 업종 및 기타 요소에 따라 다릅니다. Customedialabs의 조사결과에 따르면 전자 상거래 및 소매 사이트의 평균 이탈률은 20%에서 45% 사이입니다. 반면, 블로그나 위키 페이지는 65%에서 90% 정도의 이탈률을 나타냅니다. B2B 웹 사이트의 경우엔 평균 이탈률이 25%에서 55%사이입니다.블로그와 위키 페이지는 일반적으로 방문자들이 만족스러운 정보를 찾은 후 떠나는 경우가 많기 때문에 이탈률이 높게 나타납니다. 전자 상거래 사이트는 일반적으로 유사상품보기, 쿠폰 받기, 리뷰 확인하기 등 추가적인 탐색을 취하도록 설계되어있기 때문에 평균 이탈률이 낮게 나타납니다. 이렇게 페이지 유형에 대한 이해를 가지고 접근해야 이탈률을 제대로 평가할 수 있습니다.산업도 평균 이탈률을 결정짓는 요소입니다. 음식 및 레스토랑 관련 사이트는 모든 산업 중에서 이탈률이 높은 편이지만, 부동산이나 쇼핑 페이지는 이탈률이 낮습니다.결론적으로, 콘텐츠 및 산업의 맥락을 고려하지 않고 웹 사이트의 이탈률을 평가하는 것은 불가능합니다.이탈률을 낮추는 법 📉이탈률을 낮추기 위해선 방문자에게 더 가치 있는 경험을 제공해야합니다. 그 세부적인 방법은 다음과 같습니다.로딩 속도 높이기긴 로딩 시간을 좋아하는 방문자 없습니다. Google에 따르면 페이지 로드 시간이 1초에서 3초로 증가한다면, 이탈률은 32% 증가한다고 합니다. 로딩 속도는 구글 서치 콘솔에서 제공하는 모바일 및 웹 페이지 경험 지표에서 확인할 수 있습니다. '제대로 렌더링되지 않은 코드 조각' 등과 같이 느린 로딩 속도의 원인이 될만한 요소를 찾고 개선해야합니다.방문자 기대 충족페이지의 콘텐츠가 방문자에게 정말 가치 있는 것인지 확인해보세요. 의미없는 콘텐츠를 접한 방문자가 이탈하는 것은 어쩌면 당연합니다. 방문자의 기대를 충족 시키는 것은 검색 노출, 광고, 이메일 캠페인을 통한 유입 등의 측면에서도 중요합니다.사용자 경험 (UX) 개선아무리 로딩 속도가 빠르고 좋은 콘텐츠를 제공한다고 해도 UX가 혼란스럽고 불편하다면 방문자가 이탈할 가능성이 높습니다. 높은 이탈률을 나타내는 페이지가 있다면 해당 페이지의 UX를 점검할 필요가 있습니다. 귀찮은 스팸 팝업 광고가 너무 많은 뉴스 페이지나, 콘텐츠를 읽으려면 이메일 주소를 먼저 제출해야 하는 페이지가 대표적인 예시입니다.이탈률은 곧 페이지의 가치입니다 🧐이탈률은 페이지가 방문자에게 정말 가치있는지 판단하는 기준 중 하나입니다. 그렇지만, 이탈률에 일반적인 기준은 없다는 것을 기억하세요. 가치 있는 페이지 경험을 제공했다고 해도 이탈률은 다양하게 나타날 수 있습니다. 핵심은 페이지 경험 개선에 집중하는 것입니다.콘텐츠 더 읽어보기리텐션 캠페인 효과를 최대화하는 8가지 방법데이터기반 고객 여정 설계마케팅 캠페인의 고객 참여를 높이는 8가지 팁

마케팅 퍼널(Funnel) 의미와 분석 방법🔍

마케팅 퍼널(Funnel) 의미와 분석 방법🔍

퍼널 분석(Funnel Analysis)이란?퍼널 분석(Funnel Analysis)이란, 전환 지점에 이르기까지의 일련의 이벤트를 분석하는 방법을 말합니다. 제품, 웹사이트, 이메일 등 모든 종류의 디지털 접점에서 퍼널 분석을 할 수 있습니다. 퍼널 분석의 목적은 고객여정에서 중요한 이벤트를 정확히 파악하여, 테스트를 수행하고 사용자 경험을 개선하며 전환율을 높이는 것입니다.예를 들어, 이메일을 통해 무료 체험 이벤트를 홍보하고 무료 체험 사용자들이 최종적으로 유로 전환을 하길 원하는 캠페인이라면, 그 퍼널을 다음과 같이 구성될 것입니다.1단계: 잠재 고객이 이메일을 열고 무료 체험 제안을 발견2단계: 무료 체험을 신청하기 위해 CTA 버튼을 클릭3단계: 계정을 만들고 제품을 무료로 사용4단계: 무료 체험 기간이 종료된 후 잠재 고객이 유료 고객으로 전환퍼널 분석이 필요한 이유퍼널 분석은 왜 필요할까요? 광고에 혹해서 링크를 클릭하였는데 회원가입 절차가 복잡해서 사용을 종료한 경험, 괜찮아 보이는 앱을 설치했는데 구성이 복잡해서 금방 삭제한 경험, 한 번씩은 있을 것입니다. 고객이나 사용자가 디지털 경로를 따라가면서 원하는 결과에 도달하지 못하는 것은 굉장히 흔한 일입니다.이를 해결하기 위해 아무리 고객의 경험을 이해하려 해보아도 분명히 한계가 있습니다. 이때 퍼널 분석을 통해 각 단계를 통계적으로 들여다봄으로써 이러한 사용자의 마찰 지점을 효과적으로 개선할 수 있는 것입니다. 퍼널의 각 단계 사이에는 여러 가지 방해 요소나 장애물이 발생할 수 있으며, 무엇이 효과가 있고 무엇이 그렇지 않은지를 알려줄 수 있는 행동 패턴이 존재할 가능성이 큽니다.앞서 살펴본 예시에서 유독 3단계에서 이탈이 많다면, 그 원인이 무엇인지 행동 패턴에서 찾아볼 수 있을 것입니다. 가령 모바일 환경에서 회원가입 로딩 속도가 유독 느려 사용자가 회원가입을 쉽게 포기하기 때문일 수 있죠. 이런 경우 PC 사용자의 퍼널과 모바일 사용자의 퍼널을 비교하여 사실 여부를 쉽게 확인할 수 있을 것입니다. 이 문제를 개선하여 모바일 전환율이 PC 전환율만큼 높아진다면, 얼마나 많은 수익을 기대할 수 있을지 예상하고, 모바일 환경을 개선하는 투자 비용 대비 효과를 비교할 수 있을 것입니다. 즉, 우리가 늘 강조하는 데이터 기반의 의사결정을 수행하고 전환율을 개선할 수 있는 것입니다.정리하자면, 퍼널 분석은 다음과 같은 목적으로 사용할 수 있습니다:전환율 개선: 퍼널 분석을 통해 사용자가 최종 목적지에 도달하지 못하게 하는 요인을 파악하여, 해결책을 수립하고 전환율을 개선할 수 있습니다. 여기서 최종 목적지는 "가입" 버튼을 클릭하거나 PDF 다운로드 등 상황에 맞춰 다양하게 설정할 수 있습니다.퍼널 간소화: 웹사이트, 모바일 앱, 이메일, 대시보드 등 다양한 디지털 접점에서 퍼널을 만들 수 있을 것이고 이를 합치면 전체적인 고객 여정이 됩니다. 퍼널 분석은 이러한 각 여정이 서로 어떻게 연결되는지를 전체적인 관점에서 살펴보고 필요없거나 중복되는 부분을 찾아 간소화 할 수 있습니다.유입과 리텐션의 통합 : 보통 마케팅 팀은 신규 고객을 유입하는 데 집중하는 반면, 제품 팀은 그 고객을 유지하는 데 중점을 둡니다. 퍼널 분석은 두 팀이 데이터를 공유하고 인사이트를 교류할 수 있는 기회를 제공합니다.퍼널 분석 4가지 방법퍼널 데이터를 해석하고 활용하는 방식을 비즈니스와 산업에 따라 달라지지만, 대표적으로 다음 4가지의 방법이 있습니다.전환 분석퍼널을 분석하는 가장 기본적인 방법입니다. 각 단계에서 전환한 사용자의 수를 측정합니다. 주로 막대 그래프로 시각화하여 표현하죠. 전환 분석 방식의 핵심은 문제가 발생하였을 때 이를 빠르게 확인하고 조치를 취하는 것입니다. 퍼널의 한 단계에서 사용자 이탈이 갑자기 심해진다면, 그 부분을 빠르게 점검해야 합니다.기간에 따른 전환 분석기간에 따른 전환 분석은 특정 날짜에 퍼널에 진입한 사용자의 전환율을 확인하는 분석법입니다. 사용자가 퍼널을 완료하지 않아도 분석 대상에 계속 포함하는 것이지요. 휴일이나 특별 이벤트 동안 퍼널이 어떻게 자동하는지 이해하는 데 유용합니다. 전환 시간 분석각 사용자가 각 단계를 클릭하는 데 얼마나 시간이 걸리는지는 파악하여, 퍼널이 건강하게 작동하고 있는지 확인할 수 있습니다. 적절한 전환 시간은 비즈니스에 따라 다르기 때문에, 적절한 기준을 세우고 과거 데이터를 비교하여 설정할 필요가 있습니다. 가령, 패스트푸드 배달 앱과 세금 관련 서비스 앱의 기대되는 전환 시간은 완전히 다를 것입니다. 빈도 분석사용자가 퍼널의 다음 단계로 이동하기 전에 특정 행동을 몇 번이나 수행하는지 측정하는 분석 방법입니다. 빈도를 측정함으로써 사용자가 해당 퍼널 내에서 무엇을 얼마나 자주 하는지 파악할 수 있습니다. 가령, 장바구니 물건을 결제하기 전에 이 물건이 최저가가 맞는지 확인하기 위해 검색창에 들어가는 행동을 많이 보인다면, 장바구니 안에서 해당 물품이 최저가임을 나타내주는 메시지를 표시하여, 사용자가 더 간편하게 쇼핑 여정을 마칠 수 있도록 유도할 수 있을 것입니다.이 외에도 비즈니스나 상황에 최적화된 독특한 관점으로 접근하여 퍼널 분석을 진행할 수 있습니다. 위의 기본적인 퍼널 분석 방법에 익숙해진다면, 더 창의적인 방법으로 문제를 해결해보세요.퍼널 분석 도구퍼널 분석을 위해선 관련된 도구가 필수로 필요합니다. 대표적인 퍼널 분석 도구인 Amplitude는 단순 페이지 뷰나 세션뿐만 아니라 모든 종류의 이벤트나 사용자 행동을 측정하고 추적할 수 있습니다. 퍼널 이벤트의 순서를 지정하고 행동 코호트를 세분화하며, 특정 전환 기간을 설정할 수도 있죠.다음은 퍼널 분석 도구를 선택할 때, 필수로 체크해야하는 요소입니다고객 여정 전반에 걸쳐 사용자 행동을 시각화하고, 측정하며, 이해할 수 있어야 합니다. 이때 사용자를 코호트로 분류하여 확인할 수 있는 것이 좋습니다.퍼널 상에서 문제점이 발생했을 때, 이를 빠르게 감지하고 알림을 보낼 수 있어야 합니다.제품 개선, 개인화, 원활한 고객 여정 구축를 위한 추가적인 데이터 연계가 가능해야 합니다.콘텐츠 더 읽어보기전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)퍼널(Funnel) 분석과 사용 사례구매 전환율을 높이는 6가지 전략

전환율(Conversion Rate)이란?


전환율이란, 마케팅 활동이나 특정 행동 유도(Call to Action)에 반응하여 원하는 행동을 취한 사용자의 비율을 의미합니다. 여기서 전환으로 간주되는 행동은 비즈니스 목표에 따라 다양할 수 있으며 제품 구매, 회원가입, 구독 등이 대표적인 전환입니다. 전환율을 구하는 공식은 다음과 같습니다.


전환율 = (전환 수 / 방문자 수) x 100


전환율은 캠페인, 웹사이트, 판매 채널의 효과에 대한 중요한 인사이트를 제공하여, 마케팅 전략을 수립하는 데 유용하게 사용할 수 있습니다. 높은 전환율은 사용자들이 대체로 긍정적인 경험을 하고 있음을 나타내며, 낮은 전환율은 개선의 여지가 있음을 시사합니다







전환율 계산 방법


앞서 설명 드렸듯, 전환율은 전환 수에 방문자 수를 나누어 구할 수 있는데요. 방문자가 따로 없는 경우는 '방문자 수' 대신 '기회 수'를 넣어 계산할 수 있습니다. 전환율을 구하는 상세한 과정은 다음과 같습니다.


  1. 전환 이벤트 확인: 전환으로 측정할 구체적인 행동을 정합니다. 예를 들어 구매, 회원가입, 구독, 특정 링크 클릭 등이 전환 이벤트가 될 수 있습니다.
  2. 데이터 수집: 전환 수와 특정 기간 동안의 방문자 수(혹은 전환될 기회의 수)를 수집합니다.
  3. 공식 적용: 숫자를 공식에 대입합니다. 예를 들어 1,000명의 방문자 중 60번의 전환이 발생했다면 다음과 같이 계산할 수 있을 것입니다.


전환율 = (60 / 1,000) x 100 = 6%










전환율이 중요한 이유


비즈니스에서 가장 중요한 것 중 하나는 결과를 확인하는 것입니다. 어떤 결과가 있었는지, 그 결과가 비즈니스에 어떤 의미를 가지는지 이해하고 개선점을 찾아 적용해야 합니다. 전환율(Conversion Rate)은 비즈니스가 성공하고 있는지, 구체적으로 어떤 모습으로 성공하고 있는지 잘 보여주는 지표입니다. 전환율을 추적하고 관리한다면 다음과 같은 이점을 얻을 수 있습니다.


  1. 마케팅 캠페인의 효율성 측정: 전환율을 통해 마케팅 캠페인이 얼마나 효과적인지 평가할 수 있습니다.
  2. 수익 흐름의 건강 상태 파악: 전환율을 통해 수익 창출 경로가 잘 작동하고 있는지 확인할 수 있습니다.
  3. 판매 퍼널에서 개선이 필요한 부분 발견: 전환율은 고객이 구매로 이어지는 과정에서 약점이나 개선이 필요한 부분을 식별하는 데 도움을 줍니다.
  4. 마케팅 채널 및 캠페인 전략에 대한 의사 결정: 전환율을 분석하면 어떤 채널과 캠페인이 가장 효과적인지에 대한 판단을 할 수 있어, 더 나은 전략 수립이 가능합니다.
  5. 투자 대비 수익(ROI)을 극대화할 수 있도록 마케팅 캠페인을 최적화: 전환율을 높임으로써 ROI를 높일 수 있는 방향으로 캠페인을 조정하고 최적화할 수 있습니다.


이처럼 전환율은 마케팅 활동의 성과와 수익성을 높이는 데 핵심적인 역할을 합니다.







어떤 전환 이벤트(Conversion Event)를 설정할 수 있을까?


전환 이벤트(conversion event)는 가치 있다고 여겨지는 고객의 모든 행동이나 활동을 의미합니다.  제품 구매, 회원가입, 구독이 대표적이지만, 비즈니스 목표나 시장, 제품 유형 등에 따라 다양하게 정의될 수 있습니다.

전환 이벤트를 설정할 때는 비즈니스 또는 마케팅 캠페인의 구체적인 목표 및 핵심 성과 지표(KPI)에 맞춰 설정하는 것이 좋습니다. 쉽게 말해 성공적인 결과로 이어지는 사용자 행동을 선택해야 하죠. 실제 실무에서 자주 사용되는 전환 이벤트의 예시는 다음과 같습니다.



이처럼 전환 이벤트는 다양한 사용자 행동을 추적할 수 있으며, 비즈니스 성과를 높이는 데 중요한 역할을 합니다.








이상적 전환율


이상적 전환율은 산업, 전환 이벤트의 유형, 사이트 트래픽의 품질, 타겟 리드의 정확성에 따라 크게 달라질 수 있으며, 일괄적으로 적용되는 기준은 없습니다. 이 외에도 제품, 타겟 고객, 시장 경쟁력, 사이트 품질 등 다양한 요소가 전환율 수치에 영향을 줍니다.


일반적으로는, 목표 성과 및 기대치를 기준으로 전환율의 좋고 나쁨을 평가할 수 있습니다. 종종 벤치마크 데이터를 참고 지표로 사용하기도 합니다. 예를 들어, 이커머스 기업의 평균적인 전환율은 약 2-3% 수준입니다. 5% 이상의 전환율을 달성한 기업이 있다면, 전환율 지표가 굉장히 좋다고 볼 수 있겠죠.


전환율은 단순히 1회성 측정에서 끝나는 것이 아닌 지속적으로 추적하고 개선하는 것이 중요하며, 이를 통해 점진적인 성장과 최적화를 목표로 해야 합니다. '최고의 전환율'은 비즈니스의 목표와 업계 표준에 부합하면서도 지속적인 개선이 있어야 합니다.







전환율 최적화(CRO) 방법


전환율 최적화(CRO)는 전환을 증가시키기 위해 제품(서비스)이나 캠페인을 개선하는 활동을 의미합니다. 주로 사용자 행동을 분석하고, 제목, 이미지, CTA 버튼과 같은 요소를 테스트하는 등 데이터 기반의 조정이 필요합니다. 때문에 일반적으로는 A/B 테스트, 사용자 조사, 데이터 분석, 반복 실험 등의 방법을 사용하여, 사용자 여정을 최적화합니다. 이를 통해 전환율 지표를 개선할 수 있으며, 궁극적으로 수익, 리드 및 기타 KPI를 증가시키는 효과가 있습니다. 다음은 실제 실무에서 적용할 수 있는 전환율 최적화 방법입니다.


  1. 고객 또는 사용자 페르소나(persona) 만들기: 고객 페르소나를 통해 타겟 고객의 욕구, 필요, 문제를 더 잘 이해하고 이를 바탕으로 전환율을 개선할 수 있습니다.
  2. A/B 테스트: 랜딩 페이지, 마케팅 콘텐츠, 제품 설계 등의 여러 버전을 테스트하여 어떤 버전이 더 성과가 좋은지 파악하는 방법입니다. 성과가 더 좋은 선택지를 찾아 적용하고, 이 과정으로 반복하여 캠페인과 제품을 고객이 원하는 형태에 맞게 지속 개선할 수 있습니다.
  3. 명확한 행동 유도(call-to-action, CTA): 웹사이트의 각 페이지에는 방문자에게 원하는 행동을 명확히 안내하는 매력적인 CTA가 필요합니다. 해당 CTA를 개선하여 전환율을 직접적으로 개선할 수 있죠. 앞서 설명드린 페르소나, A/B테스트 기법을 활용할 수 있습니다.
  4. 페이지 로딩 속도와 고객 경험 개선: 로딩이 느리거나 사용자 경험이 좋지 않은 웹사이트는 방문자의 전환을 저해할 수 있습니다.
  5. 소셜 프루프(social proof) 활용: 소셜 프루프는 고객 리뷰, 후기, 수상 경력, 소셜 미디어 공유 등을 포함하며, 사이트의 신뢰성과 신뢰감을 높이는 방법입니다.







Amplitude를 활용한 전환율 극대화


Amplitude는 제품 분석 업계의 리더로서, 단순히 데이터를 분석하는 것에서 그치지 않고, 이를 실제 전략으로 전환하는 방법을 제시해줍니다. Amplitude의 데이터 분석 및 사용자 행동 추적 도구를 활용해 전환율을 극대화해보세요. Amplitude는 전환율을 극대화할 수 있는 다양한 기능과 노하우를 제공합니다. 비즈니스의 모든 영역에 대한 상세한 데이터를 제공하고, 고객의 행동을 분석하고, 어떤 요소가 고객의 관심을 끄는지에 대한 데이터를 수집할 수 있습니다. 










콘텐츠 더 읽어보기

앰플리튜드, 컨버전