Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법

Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법

개발 리소스 없이 클릭·페이지뷰 등 사용자 행동을 자동 수집해 빠른 분석과 최적화를 지원하는 Amplitude Autocapture 기능 소개

A/B테스트 개념과 데이터 분석 방법🔍

A/B테스트 개념과 데이터 분석 방법🔍

A/B 테스트는 두 가지 혹은 그 이상의 서로 다른 버전(Variant)을 비교하여 어느 쪽이 더 나은 성과를 내는지 판단하는 실험 기법입니다.

Amplitude Feature Experiment:  데이터 기반 실험의 시작

Amplitude Feature Experiment: 데이터 기반 실험의 시작

실험이 중요한 이유디지털 서비스를 운영하다 보면 다음과 같은 질문과 마주하게 됩니다. “이 버튼을 바꾸면 클릭률이 더 높아질까?” “새로운 기능을 모든 사용자에게 바로 공개해도 될까?” “프리미엄 사용자에게만 실험적으로 먼저 공개해보고 싶은데, 어떻게 관리하지?”대부분 경우 직감이나 내부 회의로 결정을 내리지만, 그 결과가 실제로 사용자 경험과 KPI에 긍정적인 영향을 주는지 알기 어렵습니다. 이로 인해 향후에 추가적인 실험 테스트를 수행하기 어려운 환경이 조성되어 버리기도 합니다.또한, 서비스를 운영하다보면, 서비스의 성장을 위해 여러 고민과 의사결정이 필요한 순간이 옵니다.✅ 새로운 기능을 모든 사용자에게 배포하기엔 위험할 때✅ 디자인이나 UI를 바꾸고 그 효과를 정확히 측정하고 싶을 때✅ 특정 사용자 그룹에게만 실험적으로 기능을 보여주고 싶을 때✅ 실험 결과를 클릭률, 전환율, 리텐션율 등의 지표로 분석하고 싶을 때따라서, 개발단의 리소스를 최소화하면서, 실제 사용자 데이터 기반의 결과 분석이 가능한 실험 체계를 도입할 필요가 있습니다. Amplitude Experiment는 고객에게 제공하는 기능 on/off 토글링부터 A/B 테스트, 점진적 릴리즈, 결과 분석까지 하나의 워크플로우 안에서 지원함으로써 "기능 실험 → 결과 측정 → 의사결정"을 오차없이 빠르게 수행할 수 있도록 도와줍니다.Amplitude Experiment에서는 다음 두 가지 방식으로 실험을 구성할 수 있습니다.Feature ExperimentWeb Experiment이름만 보아서는 비슷해 보이지만, 실제 사용 목적과 운영 방식에는 뚜렷한 차이가 있습니다. 이번 포스팅에서는 이중 Feature Experiment에 대해 집중적으로 알아보겠습니다.Feature Experiment: 기능 중심 실험Feature Experiment는 코드 기반으로 운영되는 실험 방식입니다. 개발자가 직접 고객에게 보여줄 화면을 만들거나 신규 기능을 구현한 후에 이것을 일부 고객들에게만 노출하고 원하는 효과를 보았는지 확인하고자 할 때 활용합니다.개발단에서는 변경된 화면이나 기능을 적용하고 예외 처리를 추가하여 특정 사용자에게만 노출될 수 있도록 구현하고, 실무자는 원하는 고객군과 모수 비율을 Amplitude 콘솔에서 언제든 수정하여 테스트를 수행 해 볼 수 있습니다.개발단 기능- 화면 구성- 조건 처리실무단 기능- 모수집단 선정, 비율 선택- 전환 목표 지정, 분석 방식 선정- 테스트 시작, 종료, 기간 선정- 실험 분석 결과 확인- Analytics로 추가 심화 분석 수행예시로 이해하는 Feature Experiment 활용1) 신규 기능 가설 세우기어느 날, 개발자가 추천 알고리즘 로직 개선 작업을 완료 하였습니다. 이 알고리즘을 서비스에 적용하면 굉장한 효과를 보여줄 것이라 기대하고 있지만, 바로 운영계에 적용하기에는 어떤 사이드 이펙트가 있을지 예상할 수 없었습니다. 가령 잘못된 상품 추천으로 고객에게 안 좋은 경험을 제공하면 이탈로 이어질 수 있죠.따라서, 전체 고객이 아닌, VIP 고객 중 10%에게만 새 알고리즘을 적용하고 클릭률, 구매율을 측정하기로 하였습니다. 결과 데이터가 나머지 고객들에 비해 5%이상 증가한다면 전체 사용자에게 확대 배포하는 거죠.2) 개발단 작업처음 실험을 진행하는 것이라면 Amplitude Experiment SDK를 적용하는 작업이 필요합니다. 신규 추천 알고리즘은 이미 개발 완료된 상황이고 SDK 적용은 큰 시간이 소모되지 않기 때문에 거의 바로 실험 진행이 가능합니다.(Amplitude Experiment SDK 라이브러리 탑재 및 초기화 후 고객마다 서로 다르게 제공하고자 하는 위치에서 조건문(if)을 구성)Android 적용법1. 라이브러리 추가 (build.gradle에 dependencies 추가)2. 초기화 (Application단에서 초기화)3. 현재 사용자의 experiment 관련 정보 수신4. 고객이 보유한 flag 값에 따라 제공 여부 결정( 새로운 추천 알고리즘이 제공될 10%의 VIP 고객은 "on"으로, 그 외 고객들은 모두 "off"로 적용)3) Amplitude 설정(Experiment UI 구성)3-1) Deployment 생성하기운영하는 서비스는 여러 환경으로 구분되어 있습니다.개발계(development) / 내부 QA 테스트 수행 환경(staging) / 운영 환경(production)Android, iOS, Web 등 제공 플랫폼 환경실험을 진행하고자 할 때, 특정한 환경에서만 진행하실 수도 있고, 여러 환경에서 동시에 진행해 보실 수도 있을 겁니다. 이 때, 어떤 환경에 실험을 배포할 것인지를 정의할 수 있도록 "Deployment"라는 작업이 필요합니다.하나의 프로젝트 내에서 배포할 환경마다 각각의 Deployment를 생성해주시면, 실험을 진행할 때, 이 실험을 어떤 환경에만 배포할지 지정할 수 있습니다.Experiment > Deployments 화면에서 제공하는 “Create Deployment”를 클릭하고 배포할 환경의 이름과 프로젝트를 선택하면 바로 Deployment 생성이 가능합니다.3-2) Experiment 생성하기이제 기본적인 세팅은 모두 완료 되었으니 실험을 만들어 볼 수 있습니다!Experiment > Experiments 메뉴에서 새로운 실험명과 사용할 키 값을 정하신 후 생성(Create)합니다.4) 실험 설계4-1) 목표 설정하기실험을 만들 때 가장 먼저 생각해야 할 부분은 "목표" 설정 입니다. 실험을 한다는 것은 결국, 무언가를 더 좋게 만들기 위해서이기 때문에, 반드시 “이 실험을 통해 무엇이 좋아지기를 기대하는가?”에 대한 기준이 필요하며, 그것이 바로 목표 설정입니다. 우리가 설정한 목표를 달성했는지 여부를 가지고 이번 실험의 성공 여부를 파악해 보실 수 있겠지요.목표는 기존에 만들어 두었던 지표를 선택하실 수도 있고, 원하는 목표를 새롭게 생성하실 수도 있습니다.Unique, Event Total, Conversion 등 분석에서 활용해 보셨던 다양한 지표 옵션을 기반으로 목표 설정이 가능한데, 이번 실험에서는 클릭율이 5% 이상 증가하는 것을 목표로 잡았기 때문에, "화면 진입 > 버튼 클릭"으로의 전환율이 5% 이상 상승하는 것을 목표로 설정했습니다.4-2) 대안(Variant) 등록하기비교 테스트를 진행할 때, 대안은 하나일 수 있지만 여러 개가 있을 수도 있습니다. "내가 테스트하고 싶은 기능의 버전은 몇 가지이며, 각각 어떤 차이가 있을까?" 테스트 하고자 하는 대안의 수 만큼 Add a Variant 옵션으로 추가하여 정의할 수 있습니다. (단, 너무 많은 Variant는 분석을 어렵게 하므로 2~4개 이내를 권장합니다.)각 Variant의 Value 값은 SDK에서 분기 처리에 사용(e.g. variant.value)되므로 개발단에서 미리 지정하신 값이 있을 경우, 해당 값으로 기입되어야 하며, 미리 정의되어 있지 않았다면 여기에서 정의하시는 값으로 개발단의 코드 작업이 수행되어야 합니다.※Value 값이 수정될 경우, 앱의 재배포가 필요하므로 처음 생성 시 Amplitude에서 허용하는 명명규칙(숫자, 영문, 언더스코어, 하이픈만 허용)을 참고하시어 향후 변경하지 않을 값으로 지정이 필요합니다.4-3) 고객 그룹(Targeting) 정의하기[Audience]실험에 활용할 대안을 등록했다면, 누구를 대상으로 실험을 진행할 것인지 모수 집단을 선택하실 수 있습니다. All Users를 선택하여 전체 고객을 모수 집단으로 선정할 수 있으며, Target Users를 선택하여 특정 모수집단을 Segment로 정의할 수 있습니다.[Distribution]선정한 모수 집단을 각 대안에 어느 정도 비율로 할당 할것인지 지정할 수 있습니다. 기본 옵션인 evenly distribute로 동일한 비율로 지정하는 것을 권장 드리며, 원하실 경우 Customize 옵션으로 수동 설정이 가능합니다.(control로 할당되는 고객들은 실험에 참여는 하지만 실제로는 변경된 대안 UI가 노출되지 않는 그룹으로써, 대조군의 역할을 수행합니다.)[Rollout]지정하신 모수 집단 전체를 대상으로 실험을 수행하실 수도 있으나 그 중 일부를 대상으로만 진행하는 것도 가능합니다. Rollout 설정을 통해 전체 모수 집단 중 몇 %에 해당하는 고객들을 대상으로 실험을 진행할 것인지 범위를 지정할 수 있습니다.(Control vs. Rollout: control에 포함된 고객은 실험에 포함되어 향후 결과 분석 시 대조군 역할을 하지만, Rollout에서 제외된 고객은 실험 자체에 포함되지 않으므로 결과 또한 추적되지 않습니다.)5) 전달 구성5-1) Flag & Evaluation 정의Flag는 실험을 식별하는 고유 식별자로써, 실험을 생성하시는 시점에 key 항목으로 기입한 정보를 확인하실 수 있으며, 실험 시작 전까지는 변경이 가능합니다. 이 값은 SDK에서 실험 정보 요청에 사용(e.g.FLAG_KEY) 되므로 개발단에서 미리 정하신 값이 있다면 그 값으로, 없다면 여기에서 정의된 값으로 개발단의 코드 작업이 수행되어야 합니다.Evaluation Mode는 고객이 어떤 대안에 해당 되는지를 어디에서 계산할 것인지 선택하는 항목입니다. 일반적으로는 Amplitude에 수집된 정보를 실시간으로 확인하여 결정되나, 실시간 검토 방식은 통신 상의 약간의 딜레이(0.1~1초)가 발생하므로, 고객에게 즉각적으로 노출되어야 하는 UI에 대해서는 로컬에서 계산하는 방식을 선택하실 수도 있습니다.5-2) 배포 환경(Deployment) 선택지금까지 작성한 실험을 어떤 환경에 배포 할 것인지를 선택합니다. 특정 플랫폼이나 개발환경에만 적용하고자 하실 경우, 해당하는 deployment만 선택하여 배포가 가능합니다.6) 실험 시작모든 세팅을 완료했다면, 우측 상단 버튼을 이용하여 각 플랫폼 별로 적용할 수 있는 샘플 코드를 확인할 수 있습니다. 개발 담당자에게 해당 정보를 전달하여 적용을 요청할 수 있습니다.실험을 고객들에게 배포하기 전, 미리 등록해 둔 테스터만을 대상으로 선행적으로 배포가 가능하며, 예약 실행이나 feature flag만 활성화하고 실험 분석은 수행하지 않는 등 여러 옵션을 정의해 보실 수 있습니다.모든 사항의 확인이 완료되었다면, 최종적으로 Start Experiment를 클릭하여 실험 시작이 가능합니다. 실험을 종료할 때에는 초기 버전으로 롤백을 할 것인지, 아니면 특정 대안( Variant )으로 적용할 것인지 선정하여 실험을 마칠 수 있습니다.실험이 진행되는 동안 발생한 실험 참여(Assigentment), 실험 노출(Expouse) 및 목표로 잡은 정보들은 모두 고객별 프로필에 저장되므로 이를 기반으로 심층 분석(Analytics)을 바로 수행해 볼 수 있습니다. 또한, 처음 목표로 잡았던 것 이외에도 각 그룹별로 어떠한 변화가 있었는지 수집된 데이터를 기반으로 분석이 가능합니다.실험과 분석을 하나의 플랫폼 안에서실험과 데이터 분석은 이제 더 이상 따로 작업할 필요가 없습니다. 기존 A/B 테스트 도구들이 단순히 실험을 “실행”하는 데 집중했다면, Amplitude Feature Experiment는 실험 설계부터 분석, 최종 반영까지 추가적인 개발단 작업없이 한 번에 처리할 수 있는 실험 플랫폼 체계를 제공합니다.CUPED, Sequential Testing, Bonferroni 등 실험의 정확도를 높이는 기능이 기본으로 탑재되어 있어, 적은 트래픽으로도 빠르게 유의미한 결론을 얻을 수 있으며, Amplitude Analytics와 완벽히 연결되어 언제든 전환율,리텐션, 코호트 분석 등 심층적인 결과 분석을 바로 이어나갈 수 있습니다.또한 클라이언트 배포 없이, 서버-사이드 실험 연동을 지원하므로 고객들에게 끊김없는 실험 환경 제공이 가능합니다. 제품의 성과를 빠르게 검증하고, 그 결과를 정확히 해석해 다음 의사결정으로 이어가고 싶다면, Amplitude Feature Experiment는 더없이 강력한 선택이 될 것입니다.Feature Experiment 활용에 도움이 필요하나요?팀 맥소노미 Amplitude 도입문의 바로가기

GA4 vs Amplitude 비교하기

GA4 vs Amplitude 비교하기

데이터 분석 시대, GA4만으로 충분할까?이제 거의 모든 비즈니스에서 디지털 역량은 필수 요소로 자리잡았습니다. 전통적인 제조업부터, 리테일, 물류, 심지어 외식업까지 디지털 서비스가 배제되는 산업이 없는데요. 이제 소비자는 앱이나 웹을 통해 식당을 예약하고, 내 물건이 어디까지 배송되었는지 확인하고, 마트에 방문하기 전에 원하는 물건이 있는지 확인합니다.이런 환경 속, 고객 경험 이해는 기업 경쟁력의 핵심이 되었습니다. 고객이 우리 서비스 안에서 무엇을 하고 어떤 점을 좋아하고 어떤 점에 불만을 느끼는지 명확히 알 수 있다면, 최적화 전략을 쉽게 도출할 수 있기 때문입니다.고객 경험 이해를 위한 대표적인 도구로 GA4(Google Analytics 4)와 Amplitude가 있는데요. 그중 GA4는 현재 가장 많은 시장 점유율을 가진 분석 솔루션입니다. 아무래도 무료로 제공되던 구글의 UA(Universal Analytics)로 분석을 시작하는 기업이 많았고, UA 지원이 종료되며, 자연스럽게 GA4를 사용하게 된 것이 아닐까 추측됩니다.하지만 GA4에는 여러 아쉬운 점들을 찾아볼 수 있습니다. 예를 들어, 개인화된 데이터 추적이나 고객 라이프사이클 추적 영역에서는 기능이 다소 제한적입니다. 다른 3rd party 데이터와의 통합과 유연성 측면들에도 아쉬움이 많습니다.제품 분석 솔루션 역사 이해하기GA4가 왜 이런 영역에서 유독 약한 모습을 보이는지 이해하기 위해서는 분석 솔루션의 역사를 살펴볼 필요가 있습니다.사실 GA4의 근간이 되었던, UA는 디지털 광고, UTM과 같이 신규고객 유입(User Acquisition) 중심의 퍼포먼스 마케팅 솔루션입니다. 때문에 세션 기반의 로그 데이터를 수집하는 형태로 작동하였죠. 당시 마케팅은 유저를 최대한 많이 유입시키는 것에 초점이 맞추어져있었고, UA는 이에 최적화된 솔루션으로 인기가 많았습니다.하지만 Amplitude가 시장에 출시되고, 기존의 세션 기반이 아닌, 이벤트 기반의 데이터 분석 방식을 처음 제안하였습니다. 이벤트 기반의 데이터 분석은 특히 모바일 앱 환경에서 사용자의 면밀한 행동 분석을 가능하게 하였고, 모바일 시장의 성장과 함께 Amplitude도 폭발적으로 성장할 수 있었습니다. 이때부터 마케팅의 영역이 유저 유입을 넘어, 유저 활성화, 리텐션, 수익화 등 훨씬 넓은 영역으로 확장되었습니다.이런 변화에 맞추어 구글은 기존 UA를 종료하고, 이벤트 기반의 GA4를 새롭게 출시하였습니다. Amplitude에 비하면, 여전히 퍼포먼스 분석 위주의 기능을 제공하며, 유저 라이프 사이클을 추적하는 데 있어서 다소 아쉬운 모습을 보이고 있습니다.Amplitude는 단순 분석 도구가 아니다Amplitude는 단순히 데이터를 수집하고 시각화하는 도구가 아닙니다. 고객의 획득 > 참여 > 전환 > 유지 > 성장에 이르는 고객 여정 전체를 설계하고, 이 여정에서 획득한 데이터를 제품 기획자, 마케터, 개발자 등 누구라도 쉽게 다룰 수 있는 통합 디지털 경험 플랫폼입니다.실시간 개인화 및 실시간 데이터 분석 대시보드를 통해 A/B 테스트와 같은 실험을 설정하고, 그 데이터들을 곧바로 분석80개 이상의 마케팅 플랫폼들과 네이티브 연동을 지원하며, 채널별 획득 데이터들의 리텐션 효과 분석 가능고객 전체 여정의 분석에 최적화되어, 첫 방문부터 재구매까지 사용자 ID 기반으로 고객의 라이프사이클 분석 가능 현재 Amplitude의 대표적 고객인 버거킹은 과거에는 GA4를 이용했지만, Amplitude로 전환하고 통합된 데이터를 기반으로 실험과 지속적인 개인화를 실행하며 전환율과 재구매율을 끌어올리고 있습니다." 우리는 버거 회사입니다. 버거가 바로 우리의 제품입니다. 웹사이트가 아닙니다. 하지만 경쟁력을 유지하려면 단순히 와퍼를 판매하는 것 이상의 노력을 기울여야 합니다. 오늘날 우리는 그 어느 때보다 사람들이 버거킹 브랜드를 통해 어떤 경험을 할지, 그리고 그 경험이 의미 있고 감정적인 유대감을 형성할 수 있을지 고민하고 있습니다. " - 엘리 자비스, Restaurant Brands International(버거킹) 기술 제품 관리 부사장이미지 출처: Amplitude | 개인화된 할인을 제공하는 버거킹버거킹의 고객 여정 개선은 크게 다음의 프로세스들로 이루어졌습니다.오퍼(주문) CTA 클릭을 유도하는 A/B 테스트장바구니 금액 기준, 고객별 개인화된 할인 제공Amplitude 코호트 기능을 통해 이탈 및 특정 행동 고객에게 푸시 알림 발송마치며글로벌 대표 컨설팅펌 브레인 앤 컴퍼니(Bain & Company)의 연구 결과에 따르면, 80% 이상의 기업이 고객들에게 훌륭한 경험을 제공한다고 스스로 평가했지만, 실제 훌륭한 경험을 제공받았다 생각하는 고객은 단 8%에 불과했습니다.고객 유입 마케팅의 한계를 엿볼 수 있는 부분이자, 고객 경험 관리의 중요성을 대변해주는 자료입니다. 여전히 많은 마케터분들이 캠페인 성과 측정과 유입 분석을 위해 GA4를 이용 중일 것입니다. 하지만 유입 데이터만으로는, 구체적인 액션으로 연결하지 못하고, 고객을 제대로 이해하지 못합니다.바로 지금이 진정한 고객 경험을 이해하기 위한 최적의 시기입니다. Amplitude에 대해 궁금하신 게 있다면, Team MAXONOMY에 문의하세요. 성실히 안내 도와드리겠습니다. 문의하기콘텐츠 더 읽어보기[FAQ] GA에서 Amplitude로 전환하기UA 서비스 중단 대처 가이드북[FAQ] 구글 UA종료 & GA4 전환에 대해 궁금한 모든 것분석 솔루션, 여러 개 써도 되나요?

Guides & Surveys: 사용자 행동과 피드백을 연결하는 가장 쉬운 방법

Guides & Surveys: 사용자 행동과 피드백을 연결하는 가장 쉬운 방법

고객들이 서비스에서 수행하는 행동만으로는 알 수 없는 ‘진짜 이유’, 어떻게 알 수 있을까?

Amplitude 2025년 3월 신규 기능 업데이트 훑어보기

Amplitude 2025년 3월 신규 기능 업데이트 훑어보기

Amplitude의 새로운 3월 업데이트 기능 살펴보기

Amplitude 2025년 2월 신규 기능 업데이트 훑어보기

Amplitude 2025년 2월 신규 기능 업데이트 훑어보기

Amplitude의 새로운 2월 업데이트 기능 살펴보기

전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)

전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)

전환율(Conversion Rate)이란?전환율이란, 마케팅 활동이나 특정 행동 유도(Call to Action)에 반응하여 원하는 행동을 취한 사용자의 비율을 의미합니다. 여기서 전환으로 간주되는 행동은 비즈니스 목표에 따라 다양할 수 있으며 제품 구매, 회원가입, 구독 등이 대표적인 전환입니다. 전환율을 구하는 공식은 다음과 같습니다.전환율 = (전환 수 / 방문자 수) x 100전환율은 캠페인, 웹사이트, 판매 채널의 효과에 대한 중요한 인사이트를 제공하여, 마케팅 전략을 수립하는 데 유용하게 사용할 수 있습니다. 높은 전환율은 사용자들이 대체로 긍정적인 경험을 하고 있음을 나타내며, 낮은 전환율은 개선의 여지가 있음을 시사합니다전환율 계산 방법앞서 설명 드렸듯, 전환율은 전환 수에 방문자 수를 나누어 구할 수 있는데요. 방문자가 따로 없는 경우는 '방문자 수' 대신 '기회 수'를 넣어 계산할 수 있습니다. 전환율을 구하는 상세한 과정은 다음과 같습니다.전환 이벤트 확인: 전환으로 측정할 구체적인 행동을 정합니다. 예를 들어 구매, 회원가입, 구독, 특정 링크 클릭 등이 전환 이벤트가 될 수 있습니다.데이터 수집: 전환 수와 특정 기간 동안의 방문자 수(혹은 전환될 기회의 수)를 수집합니다.공식 적용: 숫자를 공식에 대입합니다. 예를 들어 1,000명의 방문자 중 60번의 전환이 발생했다면 다음과 같이 계산할 수 있을 것입니다.전환율 = (60 / 1,000) x 100 = 6%전환율이 중요한 이유비즈니스에서 가장 중요한 것 중 하나는 결과를 확인하는 것입니다. 어떤 결과가 있었는지, 그 결과가 비즈니스에 어떤 의미를 가지는지 이해하고 개선점을 찾아 적용해야 합니다. 전환율(Conversion Rate)은 비즈니스가 성공하고 있는지, 구체적으로 어떤 모습으로 성공하고 있는지 잘 보여주는 지표입니다. 전환율을 추적하고 관리한다면 다음과 같은 이점을 얻을 수 있습니다.마케팅 캠페인의 효율성 측정: 전환율을 통해 마케팅 캠페인이 얼마나 효과적인지 평가할 수 있습니다.수익 흐름의 건강 상태 파악: 전환율을 통해 수익 창출 경로가 잘 작동하고 있는지 확인할 수 있습니다.판매 퍼널에서 개선이 필요한 부분 발견: 전환율은 고객이 구매로 이어지는 과정에서 약점이나 개선이 필요한 부분을 식별하는 데 도움을 줍니다.마케팅 채널 및 캠페인 전략에 대한 의사 결정: 전환율을 분석하면 어떤 채널과 캠페인이 가장 효과적인지에 대한 판단을 할 수 있어, 더 나은 전략 수립이 가능합니다.투자 대비 수익(ROI)을 극대화할 수 있도록 마케팅 캠페인을 최적화: 전환율을 높임으로써 ROI를 높일 수 있는 방향으로 캠페인을 조정하고 최적화할 수 있습니다.이처럼 전환율은 마케팅 활동의 성과와 수익성을 높이는 데 핵심적인 역할을 합니다.어떤 전환 이벤트(Conversion Event)를 설정할 수 있을까?전환 이벤트(conversion event)는 가치 있다고 여겨지는 고객의 모든 행동이나 활동을 의미합니다.  제품 구매, 회원가입, 구독이 대표적이지만, 비즈니스 목표나 시장, 제품 유형 등에 따라 다양하게 정의될 수 있습니다.전환 이벤트를 설정할 때는 비즈니스 또는 마케팅 캠페인의 구체적인 목표 및 핵심 성과 지표(KPI)에 맞춰 설정하는 것이 좋습니다. 쉽게 말해 성공적인 결과로 이어지는 사용자 행동을 선택해야 하죠. 실제 실무에서 자주 사용되는 전환 이벤트의 예시는 다음과 같습니다.실제 구매 완료(주로 이커머스 서비스)회원 가입소프트웨어 체험판 및 e북을 다운로드앱 다운로드 및 실행뉴스레터 구독랜딩 페이지나 특정 기사 페이지에서 일정 시간 이상 머무는 행동정기적으로 사이트에 방문하는 행동소셜 미디어 게시물에 좋아요를 누르거나 공유하는 행동광고를 클릭하여 사이트에 방문하는 행동이처럼 전환 이벤트는 다양한 사용자 행동을 추적할 수 있으며, 비즈니스 성과를 높이는 데 중요한 역할을 합니다.이상적 전환율이상적 전환율은 산업, 전환 이벤트의 유형, 사이트 트래픽의 품질, 타겟 리드의 정확성에 따라 크게 달라질 수 있으며, 일괄적으로 적용되는 기준은 없습니다. 이 외에도 제품, 타겟 고객, 시장 경쟁력, 사이트 품질 등 다양한 요소가 전환율 수치에 영향을 줍니다.일반적으로는, 목표 성과 및 기대치를 기준으로 전환율의 좋고 나쁨을 평가할 수 있습니다. 종종 벤치마크 데이터를 참고 지표로 사용하기도 합니다. 예를 들어, 이커머스 기업의 평균적인 전환율은 약 2-3% 수준입니다. 5% 이상의 전환율을 달성한 기업이 있다면, 전환율 지표가 굉장히 좋다고 볼 수 있겠죠.전환율은 단순히 1회성 측정에서 끝나는 것이 아닌 지속적으로 추적하고 개선하는 것이 중요하며, 이를 통해 점진적인 성장과 최적화를 목표로 해야 합니다. '최고의 전환율'은 비즈니스의 목표와 업계 표준에 부합하면서도 지속적인 개선이 있어야 합니다.전환율 최적화(CRO) 방법전환율 최적화(CRO)는 전환을 증가시키기 위해 제품(서비스)이나 캠페인을 개선하는 활동을 의미합니다. 주로 사용자 행동을 분석하고, 제목, 이미지, CTA 버튼과 같은 요소를 테스트하는 등 데이터 기반의 조정이 필요합니다. 때문에 일반적으로는 A/B 테스트, 사용자 조사, 데이터 분석, 반복 실험 등의 방법을 사용하여, 사용자 여정을 최적화합니다. 이를 통해 전환율 지표를 개선할 수 있으며, 궁극적으로 수익, 리드 및 기타 KPI를 증가시키는 효과가 있습니다. 다음은 실제 실무에서 적용할 수 있는 전환율 최적화 방법입니다.고객 또는 사용자 페르소나(persona) 만들기: 고객 페르소나를 통해 타겟 고객의 욕구, 필요, 문제를 더 잘 이해하고 이를 바탕으로 전환율을 개선할 수 있습니다.A/B 테스트: 랜딩 페이지, 마케팅 콘텐츠, 제품 설계 등의 여러 버전을 테스트하여 어떤 버전이 더 성과가 좋은지 파악하는 방법입니다. 성과가 더 좋은 선택지를 찾아 적용하고, 이 과정으로 반복하여 캠페인과 제품을 고객이 원하는 형태에 맞게 지속 개선할 수 있습니다.명확한 행동 유도(call-to-action, CTA): 웹사이트의 각 페이지에는 방문자에게 원하는 행동을 명확히 안내하는 매력적인 CTA가 필요합니다. 해당 CTA를 개선하여 전환율을 직접적으로 개선할 수 있죠. 앞서 설명드린 페르소나, A/B테스트 기법을 활용할 수 있습니다.페이지 로딩 속도와 고객 경험 개선: 로딩이 느리거나 사용자 경험이 좋지 않은 웹사이트는 방문자의 전환을 저해할 수 있습니다.소셜 프루프(social proof) 활용: 소셜 프루프는 고객 리뷰, 후기, 수상 경력, 소셜 미디어 공유 등을 포함하며, 사이트의 신뢰성과 신뢰감을 높이는 방법입니다.Amplitude를 활용한 전환율 극대화Amplitude는 제품 분석 업계의 리더로서, 단순히 데이터를 분석하는 것에서 그치지 않고, 이를 실제 전략으로 전환하는 방법을 제시해줍니다. Amplitude의 데이터 분석 및 사용자 행동 추적 도구를 활용해 전환율을 극대화해보세요. Amplitude는 전환율을 극대화할 수 있는 다양한 기능과 노하우를 제공합니다. 비즈니스의 모든 영역에 대한 상세한 데이터를 제공하고, 고객의 행동을 분석하고, 어떤 요소가 고객의 관심을 끄는지에 대한 데이터를 수집할 수 있습니다. 

마케터가 Amplitude를 사용해야 하는 10가지 이유

마케터가 Amplitude를 사용해야 하는 10가지 이유

Amplitude를 통해 마케터가 할 수 있는 것을 무엇이 있을까요? 요즘 마케터에게 Amplitude와 같은 툴이 필수라는 말을 많이 들었지만, 막상 구체적으로 어떤 것들을 할 수 있는지 모르는 경우가 많습니다.Amplitude를 사용하면 가장 기본적으로 전체 디지털 고객 여정을 이해하고, 그 인사이트를 바탕으로 여러가지 전략을 실행할 수 있습니다.  A/B 테스트를 실행하거나, 더 높은 수준의 개인화를 실행하고, 회사의 다른 팀들과 데이터 기반으로 협업할 수있죠. 이를 통해 고객 획득 비용을 절감하고, 리텐션을 개선하고, 마케팅 ROI 향상하는 등 데이터 기반의 그로스를 가속화하여 더 나은 비즈니스 성과를 낼 수 있습니다.오늘 포스팅에서는 이런 이점을 중심으로 마케터가 Amplitude를 사용해야 하는 10가지 이유를 살펴보도록 하겠습니다.    1. 전체적인 마케팅 현황을 파악Amplitude를 사용한다면, 어떤 마케팅 효과가 있는지, 고객은 어떻게 생각하고 행동하는지 등 다양한 데이터를 파악할 수 있습니다. 뿐만 아니라 이런 정량적인 데이터 외에 정성적인 데이터도 확인 할 수 있는데요. Session Replay 기능을 통해 고객별 혹은 세그먼트나 코호트별로 고객의 실질적인 행동과 인사이트를 실시간으로 체크할 수 있습니다. 이를 통해 디지털 경험을 재구성하고, 고객 경험을 개선할 수 있죠.글로벌 기업 A는 Amplitude Session Replay 기능을 활용하여 유독 특정 지역 시장에서 낮은 전환율을 보인다는 것을 파악했습니다. 그 원인을 '문화적인 차이'라고 가설을 세우고 해당 지역 문화에 더 잘 맞는 타겟 문구를 구성하였습니다. 해당 문구가 정말 효과적인지 확인하기 위해 A/B테스트도 진행하였죠. 그 결과, 개선된 문구는 CTA 클릭률이 두 배로 증가하였으며, 전환율이 20% 향상되었습니다.   2. 최적의 마케팅 채널 선택과 캠페인 최적화마케팅 예산은 언제나 제한적이죠. 때문에 어떤 마케팅 채널이, 어떤 캠페인이 효과가 좋은지 아는 것은 중요합니다. 많은 Amplitude 이용자들이 Amplitude의 가장 큰 이점으로 '다양한 마케팅 채널의 결과를 추적할 수 있다는 점'을 꼽습니다.  Amplitude의 웹 분석 기능은 채널, 캠페인, 페이지 및 전환 성과에 대한 즉각적인 데이터를 제공합니다. 이러한 데이터는 사용자 가입, 구매, 무료 체험 전환과 같이 세부적인 마케팅 목표와 연결하여 분석할 수 있습니다.   3. 개인화 확장Amplitude는 마케터가 적절한 사람에게 적절한 메시지를 적절한 시점에 전달하여 디지털 경험을 최적화할 수 있도록 돕습니다. 이를 통해 고객이 가장 많이 사용하는 채널과 플랫폼에서 메시지를 전달하고, 그 결과를 측정할 수 있습니다. 가입, 업그레이드, 구매, 리텐션 등 거의 모든 요소로 가능하죠.Salesforce Connected Customer 보고서에 따르면, 고객의 88%는 회사가 제공하는 경험이 제품이나 서비스만큼 중요하다고 말하며, 73%는 회사가 자신의 독특한 요구와 기대를 이해하기를 원한다고 응답했습니가Amplitude의 '데모 비디오'기능을 활용하면, 다시 돌아왔으면 하는 이탈 고객에 대한 데이터를 제공합니다. 이들에 대한 데이터를 바탕으로 고객 그룹을 Facebook, TikTok, Braze와 같은 외부 마케팅 플랫폼이나 마케팅 채널에 연동하여 활성화할 수 있습니다. 이 과정을 단 몇 번의 클릭만으로 완료할 수 있죠.   4. CRM 연동과 빠른 A/B 테스트 실행개인화된 경험을 만들기 위해 A/B 테스트는 이제 필수가 되었는데요. A/B테스트를 통해 어떤 메시지가 반응이 좋은지, 어떤 CTA(콜 투 액션)가 원하는 고객 행동을 유도하는지, 어떤 랜딩 페이지가 전환율을 높이는지 알 수 있습니다. 이런 A/B 테스트 도구가 제품 분석 시스템과 연동되지 않으면 웹 성능이 느려지고, 개발자와 협업하는 과정에서 굉장히 큰 시간이 낭비될뿐만 아니라 라이선스 비용과 유지 관리 비용도 증가합니다.Amplitude는 Braze와 같은 CRM과 높은 연동성을 가지고 있어 빠르게 테스트를 실행하고 그 결과를 분석할 수 있습니다.   5. CAC(고객 획득 비용) 절감현재 많은 기업의 마케팅 조직이 예산이 동결된 상황에서 채널 비용이 상승하고 있는 문제에 직면하고 있습니다. 이런 상황에서는 고객 획득 비용(CAC)을 낮추는 것이 무엇보다 중요한데요. Amplitude를 사용해 가장 가치 있고 전환 가능성이 높은 고객 세그먼트를 찾아, 그 인사이트를 활용해 메시지와 제안을 개인화하고, 이 세그먼트를 채널과 플랫폼에 연동하여 더 효과적인 캠페인을 진행할 수 있습니다.   6. 수익 분석고객획득과 리텐션의 중요성은 많이 알려져있는 데 반해, 이것을 최종적으로 수익으로 전환하는 '수익화'는 상대적으로 덜 알려져있습니다. 하지만 수익화는 어쩌면 가장 중요한 관리 대상이며, Amplitude를 사용한다면 디지털 경험이 수익에 어떻게 기여하는지를 이해하고 개선하고 있습니다.한 글로벌 기업은 Amplitude를 사용해 수익을 10% 증가시켰습니다. 이 기업은 판매 퍼널에서 마찰을 유발하는 요소를 파악하고 수정하였으며, 오류를 겪고 있는 사용자를 추적하고, 영향을 받은 사용자 세그먼트를 생성했습니다. 그런 다음, 해당 세그먼트를 소셜 미디어 마케팅 및 CRM 캠페인과 같은 유료 도구에 연동하여 사용자들이 사이트로 다시 돌아오도록 유도했고, 그 결과 판매 퍼널 완료율이 15% 증가했습니다.   7. 리텐션 분석기존 고객을 오래동안 유지하는 것을 사업 성장과 수익 창출의 굉장히 핵심적인 요소입니다. 성공적으로 성장하는 기업의 대부분은 기존 고객에서 수익을 창출하며, 총 수익의 80%가 기존 고객에게서 발생한다고 합니다. 리텐션 분석을 Amplitude의 가장 대표적인 분석 기능이며, 다양한 산업군에 맞는 차트를 다양한 기준과 방식으로 설정할 수 있습니다.   8. 조직 내 원활한 협업디지털 경험은 고객이 제품을 선택하고 충성도 높은 고객이 될지 여부를 결정하는 중요한 요소입니다. 고객은 기업에 제품 팀, 개발 팀, 마케팅 팀 등 어떤 부서가 있는지 관심이 없습니다. 단지 처음부터 끝까지 좋은 경험을 원할 뿐이죠.회사내 팀 간의 장벽을 허무는 일은 쉽지 않지만, Amplitude를 사용하여 통합된 인사이트를 공유하고 협업 도구를 잘 활용한다면, 조금씩 그 장벽을 허물 수 있을지 모릅니다.   9. 높은 기술 연계성Amplitude는 코드 없이 연결할 수 있는 개방형 플랫폼을 제공하여 필요한 모든 데이터를 쉽게 가져오고 내보낼 수 있으면서도 데이터 프라이버시와 보안을 보호합니다.Amplitude는 선호하는 기술 스택과 원활하게 연결되어 마케팅 팀이 더 효과적이고 데이터 기반의 캠페인과 프로그램을 실행할 수 있도록 하여 마케팅 기술 투자에서 최대의 가치를 얻을 수 있도록 돕습니다. Amplitude에서 데이터를 활용하여 프로젝트와 포트폴리오 전반에 걸쳐 다양한 코호트를 구축하여 사용자와 계정을 세분화하고 이러한 코호트를 통해 기술 스택의 하위 시스템에 연결된 디지털 프로그램을 위한 맞춤형 청중을 구축할 수 있으며, 이를 통해 사용자를 대상으로 한 맞춤 메시지를 발송할 수 있습니다.   10. 새로운 기회 발굴비즈니스에서는 종종 잘못된 전략을 추구하는 리스크를 줄이려 합니다. 그리고 데이터를 통해 의사 결정을 내리는 것은 불확실성을 줄이는 한 가지 방법입니다. 하지만 데이터를 리스크를 받아들이고 대담한 도전을 시도하는 방법으로 생각해본다면 어떨까요? 성장과 고객 참여를 촉진하기 위한 새로운, 큰 아이디어를 실험해보는 것이죠.한 글로벌 기업은 성장이 정체된 상황을 극복하기 위해 Amplitude에서 얻은 인사이트를 바탕으로 틱톡 캠페인을 기획했고, 이 캠페인이 바이럴되면서 앱을 시장 리더로 자리매김할 수 있게 했습니다. 이러한 대담한 도전이 성공할 수 있었던 이유는, 이미 데이터 투명성과 캠페인에 대한 공동 소유권에 투자했기 때문입니다.    마치며마케터로서 Amplitude를 사용하는 방법을 무궁무진합니다. 대형 캠페인을 런칭할 때마다 트래픽이 어디에서 오는지, 그리고 그것이 리드, 가입, 혹은 기능 채택으로 어떻게 전환되는지를 보여주는 대시보드를 만들 수도 있습니다. 소셜 미디어에서 가장 많은 트래픽을 유도한 캠페인이나 포스팅을 선별할 수도 있죠. 캠페인 결과를 리뷰하면서 잘된 부분과 다음에 개선할 부분을 정렬하고 링크 하나를 통해서 누구든지 동일한 데이터를 볼 수 있도록 할 수 있습니다.회사의 규모나 산업에 관계없이, 그리고 어떤 유형의 마케터인지에 상관없이, 더 나은 데이터 기반 결정을 내리고 싶다면, Amplitude는 필수적입니다. Amplitude를 통해 디지털 고객 여정 전체를 이해하고 그 인사이트를 바탕으로 행동하여, 고객이 계속해서 돌아오게 만드는 더 나은 비즈니스 결과를 얻어보세요.  

데이터 기반 UX 분석 개념과 방법 🎨

데이터 기반 UX 분석 개념과 방법 🎨

데이터 기반 UX 분석이란?User experience(UX) 분석은 데이터를 사용하여 사용자의 경험을 측정하고, 인사이트를 얻어 유저 경험을 개선하는 과정을 말합니다. 일반적으로 앱, 게임, 웹사이트, 소프트웨어 같은 종류의 제품에 적용되죠.UX 분석에 사용할 수 있는 데이터는 다양합니다. 앱이나 웹사이트에서 보내는 시간, 클릭하는 요소, 가장 많이 사용하는 기능, 구매한 내역 등 거의 대부분의 요소가 가능하죠. 심지어 '행동의 부재'도 분석 대상이 될 수 있는데요. 예를 들어 사용자가 장바구니에 담은 물건을 구매하지 않았거나, 링크 위에 커서를 올려놓았지만 클릭하지 않은 것도 UX분석의 대상이 될 수 있습니다.가계부 관리를 하고자 하는 사람 A가 있고, 우리는 가계부 앱을 서비스하는 기업이라고 가정해 봅시다. 우리는 A가 가계부 앱을 검색하고 우리 앱을 다운로드하고, 체험판에 가입하고, 은행 계좌나 신용카드와 같은 정보를 연동하기를 원할 것입니다. 그리고 체험판이 끝나면 유료 구독까지 전환되기를 희망하죠.이걸 '사용자 여정'이라고 부르며, 각 여정마다 사용자가 다음 여정으로 계속 진행할 수 있도록 좋은 사용자 경험을 제공해야 할 것입니다. 만약 여정을 완수하지 못하는 사용자가 있다면, UX 분석을 통해 어디서, 왜 이탈했는지 이해하고 궁극적으로 미래에 사용자 경험을 어떻게 개선할 수 있을지 힌트를 얻을 수 있습니다.UX 분석 대상구체적으로 어떤 데이터를 분석하고 지표를 측정할지는 제품이나 상황에 따라 천차만별입니다. 그렇기 때문에 이번 포스팅에선 비즈니스 의사결정까지도 활용할 수 있는 굵직한 주요 UX 데이터 지표를 중심으로 설명드리겠습니다. 해당 지표를 기반으로 어떤 최적화된 지표를 측정해볼 수 있을지 고민해보면 좋을 것 같습니다.응답 시간: 응답 시간은 페이지나 앱이 얼마나 빠르게 로딩되는지에 대한 지표입니다. 우리 생각보다 사용자들은 로드되는 시간을 오래 기다리지 않습니다. 몇 초만 버벅이면 바로 이탈하죠.신규 및 재방문자 수: 신규 및 재방문자 수는 얼마나 효과적으로 사용자를 유치(Acquisition)하고 유지(Retention)하는지에 대한 지표입니다. 신규 방문자 수가 증가하지 않는다면, 마케팅 전략을 다시 검토해야 하며, 재방문자 비율이 낮다면, 제품 경험을 검토해야 합니다. 재방문자 비율에 문제가 있는 경우에는 리텐션 분석을 더 깊게 수행하여 재방문한 사용자와 이탈한 사용자 간의 행동 차이를 확인하는 것이 좋습니다.세션 길이: 세션 길이는 사용자가 제품을 얼마나 오래 사용하는지를 측정하는 지표입니다. 세션 시간이 길수록 좋을 것 같지만, 제품에 따라 그렇지 않을 수도 있습니다. 만약 뉴스 앱이라면 긴 세션 시간은 사용자가 적극적으로 참여하고 있다는 긍정적인 신호일 가능성이 높죠. 반면, 현금 송금 앱이라면 긴 세션 시간은 사용자가 원하는 작업을 수행하는 데 어려움을 겪고 있다는 신호일 수 있습니다. 이처럼 세션 길이 지표는 제품의 특성에 따라 사용자 경험을 유연하게 판단해야 합니다.세션당 페이지 수: 세션당 페이지 수는 한 세션 동안 방문하는 총 페이지 수를 의미합니다. 세션 길이와 마찬가지로 많은 페이지를 방문하는 것이 좋을 수도 있고 나쁠 수도 있습니다. 사용자가 제품에 깊게 몰입하여 사용하는 것일 수도 있지만, 원하는 답을 찾지 못해 이리 저리 방황하는 것일 수도 있습니다. 만약 후자라면, 더 적은 클릭으로 원하는 답을 쉽게 찾을 수 있도록 개선해야 합니다.전환율: 고객 여정의 각 여정에서 상위 여정으로 넘어가는 비율을 전환율이라고 합니다. 만약 광고 단계에서 클릭률, 즉 전환율이 높지 않다면 메시지를 조정해야 하는 등의 방법을 사용해야 합니다. 사용자가 앱을 다운로드했지만 유료 고객으로 전환되지 않는다면, 온보딩 과정을 조정하여 전환율을 높일 수 있습니다. 전환율은 사용자의 행동을 분석하고 제품 개선 방안을 찾는 데 중요한 역할을 합니다.과제 성공률과 과제 수행 시간: 제품이 사용하기 쉬운지 여부를 가장 명확하게 보여주는 지표가 바로 과제 성공률과 과제 수행 시간입니다. 여기서 말하는 '과제'는 서비스의 주요 사용 목적이나 기능을 말하는데요. 배달 앱 사용자가 음식 주문을 하려하는 데, 주문 방법을 몰라 한참을 헤매거나 주문 과정 자체가 너무 오래 걸린다면, 인내심을 잃고 앱을 이탈할 것입니다. 해당 지표를 통해서, 제품의 핵심 과제에 집중하고, 이러한 과제를 완수하는 과정을 자연스럽고 직관적이며 간단하게 만들어야 합니다.사용자 정착률(Stickiness): 정착률은 일일 평균 사용자 수(DAU)를 월간 평균 사용자 수(MAU)로 나누어 측정합니다. 이 지표는 사용자가 평균적으로 한 달에 며칠 동안 제품을 사용하는지 보여줍니다. 매일 접속하긴 바라는 게임과 같은 비즈니스에 특히 유용합니다. 하지만 모든 비즈니스에 적합한 지표는 아닙니다. 가령 비행기 예매 앱같은 경우 사용자 정착률이 크게 의미 있진 않겠죠.내비게이션 vs 검색 비율: 사용자가 제품을 탐색하는 데 검색 창에 지나치게 의존한다면, 이는 제품 디자인이 직관적이지 않다는 신호일 수 있습니다. 사용자가 최소한의 클릭으로 원하는 것을 빠르게 찾을 수 있도록 다양한 레이아웃, 구조, 구성 방식을 실험해 보아야 합니다.기능 참여율: 기능 참여율은 기능이 얼마나 자주 사용되는지를, 제품을 열어본 사용자 수로 나누어 측정한 지표입니다. 기능 참여율과 리텐션 분석을 결합하면, 특정 기능을 사용하는 사용자가 유지될 가능성이 어떤지 확인할 수 있습니다. 중요한 기능이 거의 사용되지 않는다면, 해당 기능을 더 눈에 띄게 UI를 조정할 필요가 있을 수 있습니다. 사용자에게 해당 기능을 알려주는 알림이나 이메일을 보내는 방법도 고려할 수 있겠죠.고객 이탈률: 고객 이탈률은 [(월초 고객 수) - (월말에 남아 있는 고객 수)] / (월초 고객 수) 입니다. 예를 들어, 6월 초에 100명의 고객이 있었고 6월 말에 90명의 고객이 남았다면, 이탈률은 10%가 됩니다. 고객의 충성도와 이탈을 평가하고 필요한 개선을 도출하는 데 중요한 지표입니다.UX 디자인과 데이터 분석 간의 관계UX 디자인은 단순히 제품을 예쁘게 만드는 것이 아닙니다. 제품을 자연스럽게 사용할 수 있도록 설계하고, 사용자의 기대를 뛰어넘는 결과를 제공해 그 제품에 매력을 느끼게 만드는 것이 목적입니다. 이를 위해서는 예술적 감각뿐만 아니라, 과학적인 데이터 분석과 테스트 과정이 필수적입니다. 데이터를 사용해 인사이트를 얻고 이를 바탕으로 가설을 세운 후, UX 디자인 테스트를 통해 이 가설을 증명해야 합니다.예를 들어, 운동화 회사의 제품 관리자가 재구매율이 낮다는 사실을 발견했다고 가정해 봅시다. 데이터에 따르면 대부분의 고객은 10개월마다 신발을 구매합니다. 관리자는 고객이 10개월 후에 자동 리마인더를 받으면 재구매율이 높아질 것이라고 가정합니다.이후 제품 팀은 마케팅 팀과 협력하여 이메일과 같은 메시지를 다양한 고객 그룹에 대해 A/B 테스트하여 재구매율을 높일 수 있는지 실험할 수 있습니다.UX 분석 대시보드 만들기UX 분석과 개선 과정에는 조직 전체의 의사 결정이 필요한 경우가 많습니다. 때문에 조직 내에서 원활한 정보 공유와 통일된 접근 방식이 필요합니다. 이때 필요한 것이 분석 대시보드입니다.좋은 UX 분석 대시보드는 중요한 지표들을 맨 위에 배치합니다. 일일 대시보드에는 세 가지 또는 네 가지 이상의 지표가 포함되지 않도록 하여, 대시보드 확인이 복잡하지 않도록 해야 합니다. 또한 지표는 비즈니스 목표와 직접 연결되어야 하며, 대시보드의 첫 번째 항목을 보면 비즈니스의 상태를 간략하게 확인할 수 있어야 합니다. 그 아래에는 대시보드에 다양한 시간대를 포함시켜, 즉각적으로 해결해야 할 문제와 중장기적인 데이터의 추세를 구분할 수 있는 것이 좋습니다.마치며사용자 경험은 제품 성공 또는 실패에 중요한 역할을 합니다. 사용자가 제품에 대해 느끼는 것을 파악하는 일은 데이터 분석가뿐만 아니라 조직 전체에서 이루어져야 합니다. 조직 내 모든 사람들이 해당 데이터를 활용해 사용자 행동에 대한 질문에 신속하게 답할 수 있어야 합니다. UX 분석과 대시보드의 적절한 활용은 비즈니스 성장과 제품 개선에 크게 기여할 수 있습니다. 대표적으로 Amplitude와 같은 솔루션을 이용한다면, 이런 데이터를 손 쉽게 측정하고 관리하고, 또 대시보드를 구성할 수 있습니다. UX 데이터 분석에 대해서 더 깊은 인사이트를 얻고 싶다면 맥소노미 홈페이지에 올라온 다양한 가이드북을 확인해보세요.

마케팅 퍼널(Funnel) 의미와 분석 방법🔍

마케팅 퍼널(Funnel) 의미와 분석 방법🔍

퍼널 분석(Funnel Analysis)이란?퍼널 분석(Funnel Analysis)이란, 전환 지점에 이르기까지의 일련의 이벤트를 분석하는 방법을 말합니다. 제품, 웹사이트, 이메일 등 모든 종류의 디지털 접점에서 퍼널 분석을 할 수 있습니다. 퍼널 분석의 목적은 고객여정에서 중요한 이벤트를 정확히 파악하여, 테스트를 수행하고 사용자 경험을 개선하며 전환율을 높이는 것입니다.예를 들어, 이메일을 통해 무료 체험 이벤트를 홍보하고 무료 체험 사용자들이 최종적으로 유로 전환을 하길 원하는 캠페인이라면, 그 퍼널을 다음과 같이 구성될 것입니다.1단계: 잠재 고객이 이메일을 열고 무료 체험 제안을 발견2단계: 무료 체험을 신청하기 위해 CTA 버튼을 클릭3단계: 계정을 만들고 제품을 무료로 사용4단계: 무료 체험 기간이 종료된 후 잠재 고객이 유료 고객으로 전환퍼널 분석이 필요한 이유퍼널 분석은 왜 필요할까요? 광고에 혹해서 링크를 클릭하였는데 회원가입 절차가 복잡해서 사용을 종료한 경험, 괜찮아 보이는 앱을 설치했는데 구성이 복잡해서 금방 삭제한 경험, 한 번씩은 있을 것입니다. 고객이나 사용자가 디지털 경로를 따라가면서 원하는 결과에 도달하지 못하는 것은 굉장히 흔한 일입니다.이를 해결하기 위해 아무리 고객의 경험을 이해하려 해보아도 분명히 한계가 있습니다. 이때 퍼널 분석을 통해 각 단계를 통계적으로 들여다봄으로써 이러한 사용자의 마찰 지점을 효과적으로 개선할 수 있는 것입니다. 퍼널의 각 단계 사이에는 여러 가지 방해 요소나 장애물이 발생할 수 있으며, 무엇이 효과가 있고 무엇이 그렇지 않은지를 알려줄 수 있는 행동 패턴이 존재할 가능성이 큽니다.앞서 살펴본 예시에서 유독 3단계에서 이탈이 많다면, 그 원인이 무엇인지 행동 패턴에서 찾아볼 수 있을 것입니다. 가령 모바일 환경에서 회원가입 로딩 속도가 유독 느려 사용자가 회원가입을 쉽게 포기하기 때문일 수 있죠. 이런 경우 PC 사용자의 퍼널과 모바일 사용자의 퍼널을 비교하여 사실 여부를 쉽게 확인할 수 있을 것입니다. 이 문제를 개선하여 모바일 전환율이 PC 전환율만큼 높아진다면, 얼마나 많은 수익을 기대할 수 있을지 예상하고, 모바일 환경을 개선하는 투자 비용 대비 효과를 비교할 수 있을 것입니다. 즉, 우리가 늘 강조하는 데이터 기반의 의사결정을 수행하고 전환율을 개선할 수 있는 것입니다.정리하자면, 퍼널 분석은 다음과 같은 목적으로 사용할 수 있습니다:전환율 개선: 퍼널 분석을 통해 사용자가 최종 목적지에 도달하지 못하게 하는 요인을 파악하여, 해결책을 수립하고 전환율을 개선할 수 있습니다. 여기서 최종 목적지는 "가입" 버튼을 클릭하거나 PDF 다운로드 등 상황에 맞춰 다양하게 설정할 수 있습니다.퍼널 간소화: 웹사이트, 모바일 앱, 이메일, 대시보드 등 다양한 디지털 접점에서 퍼널을 만들 수 있을 것이고 이를 합치면 전체적인 고객 여정이 됩니다. 퍼널 분석은 이러한 각 여정이 서로 어떻게 연결되는지를 전체적인 관점에서 살펴보고 필요없거나 중복되는 부분을 찾아 간소화 할 수 있습니다.유입과 리텐션의 통합 : 보통 마케팅 팀은 신규 고객을 유입하는 데 집중하는 반면, 제품 팀은 그 고객을 유지하는 데 중점을 둡니다. 퍼널 분석은 두 팀이 데이터를 공유하고 인사이트를 교류할 수 있는 기회를 제공합니다.퍼널 분석 4가지 방법퍼널 데이터를 해석하고 활용하는 방식을 비즈니스와 산업에 따라 달라지지만, 대표적으로 다음 4가지의 방법이 있습니다.전환 분석퍼널을 분석하는 가장 기본적인 방법입니다. 각 단계에서 전환한 사용자의 수를 측정합니다. 주로 막대 그래프로 시각화하여 표현하죠. 전환 분석 방식의 핵심은 문제가 발생하였을 때 이를 빠르게 확인하고 조치를 취하는 것입니다. 퍼널의 한 단계에서 사용자 이탈이 갑자기 심해진다면, 그 부분을 빠르게 점검해야 합니다.기간에 따른 전환 분석기간에 따른 전환 분석은 특정 날짜에 퍼널에 진입한 사용자의 전환율을 확인하는 분석법입니다. 사용자가 퍼널을 완료하지 않아도 분석 대상에 계속 포함하는 것이지요. 휴일이나 특별 이벤트 동안 퍼널이 어떻게 자동하는지 이해하는 데 유용합니다. 전환 시간 분석각 사용자가 각 단계를 클릭하는 데 얼마나 시간이 걸리는지는 파악하여, 퍼널이 건강하게 작동하고 있는지 확인할 수 있습니다. 적절한 전환 시간은 비즈니스에 따라 다르기 때문에, 적절한 기준을 세우고 과거 데이터를 비교하여 설정할 필요가 있습니다. 가령, 패스트푸드 배달 앱과 세금 관련 서비스 앱의 기대되는 전환 시간은 완전히 다를 것입니다. 빈도 분석사용자가 퍼널의 다음 단계로 이동하기 전에 특정 행동을 몇 번이나 수행하는지 측정하는 분석 방법입니다. 빈도를 측정함으로써 사용자가 해당 퍼널 내에서 무엇을 얼마나 자주 하는지 파악할 수 있습니다. 가령, 장바구니 물건을 결제하기 전에 이 물건이 최저가가 맞는지 확인하기 위해 검색창에 들어가는 행동을 많이 보인다면, 장바구니 안에서 해당 물품이 최저가임을 나타내주는 메시지를 표시하여, 사용자가 더 간편하게 쇼핑 여정을 마칠 수 있도록 유도할 수 있을 것입니다.이 외에도 비즈니스나 상황에 최적화된 독특한 관점으로 접근하여 퍼널 분석을 진행할 수 있습니다. 위의 기본적인 퍼널 분석 방법에 익숙해진다면, 더 창의적인 방법으로 문제를 해결해보세요.퍼널 분석 도구퍼널 분석을 위해선 관련된 도구가 필수로 필요합니다. 대표적인 퍼널 분석 도구인 Amplitude는 단순 페이지 뷰나 세션뿐만 아니라 모든 종류의 이벤트나 사욘자 해동을 측정하고 추적할 수 있습니다. 퍼널 이벤트의 순서를 지정하고 행동 코호트를 세분화하며, 특정 전환 기간을 설정할 수도 있죠.다음은 퍼널 분석 도구를 선택할 때, 필수로 체크해야하는 요소입니다.고객 여정 전반에 걸쳐 사용자 행동을 시각화하고, 측정하며, 이해할 수 있어야 합니다. 이때 사용자를 코호트로 분류하여 확인할 수 있는 것이 좋습니다.퍼널 상에서 문제점이 발생했을 때, 이를 빠르게 감지하고 알림을 보낼 수 있어야 합니다.제품 개선, 개인화, 원활한 고객 여정 구축를 위한 추가적인 데이터 연계가 가능해야 합니다.

모바일 게임 리텐션(Retention) 바로알기 🎮

모바일 게임 리텐션(Retention) 바로알기 🎮

모바일 게임의 성과를 측정할 때 가장 중요한 지표는 아마 리텐션일 것입니다. 리텐션을 측정하는 기본적인 방식은 어느 서비스나 동일하지만, 서비스나 산업에 따라 그 특성에 맞는 상세한 리텐션 설정 기준과 측정 방법이 존재합니다. 모바일 게임 서비스도 마찬가지로 게임이라는 특성에 맞는 적합한 리텐션율 측정법이 있습니다.리텐션율은 크게 'N-day 리텐션율', 'Unbounded 리텐션율', 'Bracketed 리텐션율' 3가지로 나뉩니다. 이중 모바일 게임에 가장 많이 적용하는 지표는  N-day 리텐션율입니다. 이유가 무엇일까요? 이번 포스트에서는 모바일 게임에 적합한 리텐션 설정 방법과 그 이유에 대해서 알아보겠습니다.N-day 리텐션 vs Unbounded 리텐션N-day 리텐션은 사용자가 처음 앱을 사용한 이후, 지정된 날에 앱으로 돌아오는 비율을 말합니다. 예를 들어, 2일차 N-day 리텐션율이 50%라면, 새로운 유저의 50%가 2일차에도 앱을 실행했다는 것을 의미합니다. 반면, Unbounded 리텐션은 특정한 날짜에 앱으로 돌아오는 사용자의 비율이나 이후의 임의의 날짜를 측정합니다. 만약 2일차 Unbounded 리텐션율이 50%라면, 새로운 사용자의 50%가 2일차를 포함한 그 이후에 한번이라도 앱을 사용했다는 것을 뜻합니다.아래는 동일한 모바일 애플리케이션에 대한 N-day 리텐션과 Unbounded 리텐션(Rolling Retention)을 비교한 그래프입니다.그래프를 보시면 알겠지만, 두 지표 간의 차이는 상당히 큽니다. 이 사실을 모른채로 아무 리텐션 지표를 모니터링한다면, 중요한 비즈니스 의사결정에 큰 오류가 생길 수 있겠죠.Day 1을 기준으로 보면 N-day 리텐션은 43%로, 신규 유저 중 43%가 앱을 처음 사용한 후 첫 번째 날에 앱을 실행했다는 것을 의미합니다. 반면, Unbouded 리텐션은 59%로, 이는 새로운 사용자 중 59%가 Day1을 포함하여 그 이후의 어느 날이든 한번 이상 앱을 실행했다는 것을 의미합니다.N-day 리텐션을 사용하면, 앱을 가장 처음 실행한 이후 N일이 지난 시점까지 앱으로 얼마나 많은 사용자가 돌아오는지 정확한 비율을 알 수 있습니다. 따라서 모바일 게임같이 유저가 매일 플레이하는 것이 목표인 애플리케이션은 N-day 리텐션이 적합하다고 할 수 있죠.물론 N-day 리텐션이 항상 정답은 아닙니다. 어떤 케이스에서는 매일은 아니더라도 조금 긴 텀을 가지고 사용자가 돌아오는 것이 유의미할 수 있습니다. 대표적으로 모바일 임대료 결제 앱이라면, 사용자가 매월 한 번씩만 앱을 사용하여 결제를 하는 것이 앱 성공의 기준이 될 수 있겠죠. 이 경우에는 N-day 리텐션보다는 Unbouded 리텐션을 측정하는 것이 유용할 것입니다. 흔한 케이스는 아니겠지만, 특정 게임도 Unbouded 리텐션을 사용하는 것이 적합할 수 있습니다. 예를 들어 '텐텐 오락실'이라는 앱은 술자리나 많은 사람들이 모인 자리에서 다 함께 플레이하는 모바일 게임입니다. 이런 류의 게임의 경우, 유저가 매일 습관적으로 접속하길 기대하지 않겠죠.시간 기준 리텐션 VS 날짜 기준 리텐션N-day 리텐션과 Unbounded 리텐션 차이 외에도, 시간 기준과 날짜 기준으로 리텐션 계산 방법을 나눌 수도 있습습니다. 시간 기준으로 계산한다면, 각 사용자별 접속 시간을 기준으로 날짜를 구별합니다. 즉, Day 0는 사용자가 앱을 최초로 실행시킨 시간부터 24시간이 지난 시간인 0 ~ 24시간 사이를 의미하고, Day 1은 24시간부터 48시간 사이를 의미합니다. Day 1 리텐션율이 10%라고 가정해본다면, 1,000명의 사용자 중에서 100명이 각각의 처음으로 앱을 실행한 이후 24시간에서 48시간 사이에 앱을 한번 이상 더 실행했다는 것을 뜻합니다. 만약 사용자 X가 화요일 오후 4시에 처음으로 앱을 실행했다면, 수요일 오후 4시와 목요일 오후 4시 사이에 앱을 다시 열었다는 뜻입니다.반면, 날짜를 기준으로 계산할 때, 리텐션 차트는 그저 달력상의 날짜를 기준으로 측정됩니다. 만약 어떤 사용자가 10월 1일 오후 11시에 처음으로 앱을 실행했다면, 이 사람의 Day 0는 10월1일, Day 1는 10월 2일이 될 것입니다.아래 그래프는 앞서 살펴본 동일한 앱에 대한 시간 기준 리텐션과 날짜 기준 리텐션 수치입니다.처음 며칠 동안에 가장 뚜렷한 차이가 나타난다는 것을 알 수 있습니다. 날짜 기준 Day 1 리텐션은 43%인 반면, 시간 기준 Day 1 리텐션은 32%에 불과합니다. 하지만 시간이 흐름에 따라, 두 그래프 간의 차이는 줄어들고 이 둘을 구별하는 의미는 많이 사라진다고 볼 수 있습니다.시간 기준과 날짜 기준을 구별하는 이유시간이 흐름에 따라 구별 의미가 줄어들면 굳이 이 두 지표를 나누는 이유가 있나 궁금해질 겁니다. 하지만 우리가 리텐션 지표를 평가할 때는 보통 앱 출시 초기에 다른 앱의 리텐션 지표와 비교하는 식으로 많이 진행합니다. 이 때, 다른 기준의 리텐션 지표를 비교하면 분명 큰 오류가 생기겠죠. 빠르게 시장 반응을 살피고 대응해야하는 앱 출시 초기에는 이 오류가 치명적으로 작동할 수 있습니다.예를 들어, 모바일 게임 초기 버전을 런칭한 후 Day 1 리텐션율이 32%라고 가정해봅시다. 이것만으로는 리텐션이 잘 이루어지고 있는지 판달할 수 없겠죠. 최대한 유사한 게임과 리텐션율을 비교해보아야합니다. 만약 이 때, 시간 기준과 날짜 기준 리테션 지표를 잘못 비교한다면, 제대로된 벤치마크가 되지 않겠죠.결국 어떤 지표로 모바일 게임을 측정해야하나요?리텐션 지표에 정해진 정답은 없습니다. 그렇지만 일반적인 경우에는 날짜 기준 리텐션보다는 시간 기준 리텐션이 더 정확한 현황을 보여준다고 할 수 있습니다. 하지만 시간 기준 리텐션은 정확한 데이터를 얻는데 하루 더 걸린다는 단점이 있습니다. 앱 출시 초기라면 하루 일찍 대응하는 것의 차이가 큰 결과 차이를 만들 수 있죠.정리하자면, "일반적인 모바일 게임이라면 N-day 리텐션을 측정하는 것이 좋지만, 간혹 매일 들어오는 것을 원하지 않는 게임일 경우 Unbounded 리텐션 지표를 사용하는 것이 좋을 수 있으며, 또 기본적으로 시간 기준 리텐션을 측정하는 것이 정확하나, 데이터를 더 빨리 얻어야 할 때는 날짜 기준 리텐션을 먼저 살펴보는 것이 좋다." 정도가 될 것 같습니다.다시 한번 말하지만 리텐션에 정해진 정답은 없으며, 각 지표가 정확히 무엇을 측정하는 것인지 알고 있다면, 어떤 상황에서든 데이터 기반의 유의미한 인사이트를 도출할 수 있을 것입니다.

1
2
3
4

비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요

Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법A/B테스트 개념과 데이터 분석 방법🔍Amplitude Feature Experiment: 데이터 기반 실험의 시작GA4 vs Amplitude 비교하기Guides & Surveys: 사용자 행동과 피드백을 연결하는 가장 쉬운 방법Amplitude 2025년 3월 신규 기능 업데이트 훑어보기Amplitude 2025년 2월 신규 기능 업데이트 훑어보기전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)마케터가 Amplitude를 사용해야 하는 10가지 이유데이터 기반 UX 분석 개념과 방법 🎨마케팅 퍼널(Funnel) 의미와 분석 방법🔍모바일 게임 리텐션(Retention) 바로알기 🎮