앰플리튜드
데이터 기반 UX 분석 개념과 방법 🎨
Team MAXONOMY ・ 2024.09.26

데이터 기반 UX 분석이란?
User experience(UX) 분석은 데이터를 사용하여 사용자의 경험을 측정하고, 인사이트를 얻어 유저 경험을 개선하는 과정을 말합니다. 일반적으로 앱, 게임, 웹사이트, 소프트웨어 같은 종류의 제품에 적용되죠.
UX 분석에 사용할 수 있는 데이터는 다양합니다. 앱이나 웹사이트에서 보내는 시간, 클릭하는 요소, 가장 많이 사용하는 기능, 구매한 내역 등 거의 대부분의 요소가 가능하죠. 심지어 '행동의 부재'도 분석 대상이 될 수 있는데요. 예를 들어 사용자가 장바구니에 담은 물건을 구매하지 않았거나, 링크 위에 커서를 올려놓았지만 클릭하지 않은 것도 UX분석의 대상이 될 수 있습니다.
가계부 관리를 하고자 하는 사람 A가 있고, 우리는 가계부 앱을 서비스하는 기업이라고 가정해 봅시다. 우리는 A가 가계부 앱을 검색하고 우리 앱을 다운로드하고, 체험판에 가입하고, 은행 계좌나 신용카드와 같은 정보를 연동하기를 원할 것입니다. 그리고 체험판이 끝나면 유료 구독까지 전환되기를 희망하죠.
이걸 '사용자 여정'이라고 부르며, 각 여정마다 사용자가 다음 여정으로 계속 진행할 수 있도록 좋은 사용자 경험을 제공해야 할 것입니다. 만약 여정을 완수하지 못하는 사용자가 있다면, UX 분석을 통해 어디서, 왜 이탈했는지 이해하고 궁극적으로 미래에 사용자 경험을 어떻게 개선할 수 있을지 힌트를 얻을 수 있습니다.
UX 분석 대상
구체적으로 어떤 데이터를 분석하고 지표를 측정할지는 제품이나 상황에 따라 천차만별입니다. 그렇기 때문에 이번 포스팅에선 비즈니스 의사결정까지도 활용할 수 있는 굵직한 주요 UX 데이터 지표를 중심으로 설명드리겠습니다. 해당 지표를 기반으로 어떤 최적화된 지표를 측정해볼 수 있을지 고민해보면 좋을 것 같습니다.
응답 시간: 응답 시간은 페이지나 앱이 얼마나 빠르게 로딩되는지에 대한 지표입니다. 우리 생각보다 사용자들은 로드되는 시간을 오래 기다리지 않습니다. 몇 초만 버벅이면 바로 이탈하죠.
신규 및 재방문자 수: 신규 및 재방문자 수는 얼마나 효과적으로 사용자를 유치(Acquisition)하고 유지(Retention)하는지에 대한 지표입니다. 신규 방문자 수가 증가하지 않는다면, 마케팅 전략을 다시 검토해야 하며, 재방문자 비율이 낮다면, 제품 경험을 검토해야 합니다. 재방문자 비율에 문제가 있는 경우에는 리텐션 분석을 더 깊게 수행하여 재방문한 사용자와 이탈한 사용자 간의 행동 차이를 확인하는 것이 좋습니다.
세션 길이: 세션 길이는 사용자가 제품을 얼마나 오래 사용하는지를 측정하는 지표입니다. 세션 시간이 길수록 좋을 것 같지만, 제품에 따라 그렇지 않을 수도 있습니다. 만약 뉴스 앱이라면 긴 세션 시간은 사용자가 적극적으로 참여하고 있다는 긍정적인 신호일 가능성이 높죠. 반면, 현금 송금 앱이라면 긴 세션 시간은 사용자가 원하는 작업을 수행하는 데 어려움을 겪고 있다는 신호일 수 있습니다. 이처럼 세션 길이 지표는 제품의 특성에 따라 사용자 경험을 유연하게 판단해야 합니다.
세션당 페이지 수: 세션당 페이지 수는 한 세션 동안 방문하는 총 페이지 수를 의미합니다. 세션 길이와 마찬가지로 많은 페이지를 방문하는 것이 좋을 수도 있고 나쁠 수도 있습니다. 사용자가 제품에 깊게 몰입하여 사용하는 것일 수도 있지만, 원하는 답을 찾지 못해 이리 저리 방황하는 것일 수도 있습니다. 만약 후자라면, 더 적은 클릭으로 원하는 답을 쉽게 찾을 수 있도록 개선해야 합니다.
전환율: 고객 여정의 각 여정에서 상위 여정으로 넘어가는 비율을 전환율이라고 합니다. 만약 광고 단계에서 클릭률, 즉 전환율이 높지 않다면 메시지를 조정해야 하는 등의 방법을 사용해야 합니다. 사용자가 앱을 다운로드했지만 유료 고객으로 전환되지 않는다면, 온보딩 과정을 조정하여 전환율을 높일 수 있습니다. 전환율은 사용자의 행동을 분석하고 제품 개선 방안을 찾는 데 중요한 역할을 합니다.
과제 성공률과 과제 수행 시간: 제품이 사용하기 쉬운지 여부를 가장 명확하게 보여주는 지표가 바로 과제 성공률과 과제 수행 시간입니다. 여기서 말하는 '과제'는 서비스의 주요 사용 목적이나 기능을 말하는데요. 배달 앱 사용자가 음식 주문을 하려하는 데, 주문 방법을 몰라 한참을 헤매거나 주문 과정 자체가 너무 오래 걸린다면, 인내심을 잃고 앱을 이탈할 것입니다. 해당 지표를 통해서, 제품의 핵심 과제에 집중하고, 이러한 과제를 완수하는 과정을 자연스럽고 직관적이며 간단하게 만들어야 합니다.
사용자 정착률(Stickiness): 정착률은 일일 평균 사용자 수(DAU)를 월간 평균 사용자 수(MAU)로 나누어 측정합니다. 이 지표는 사용자가 평균적으로 한 달에 며칠 동안 제품을 사용하는지 보여줍니다. 매일 접속하긴 바라는 게임과 같은 비즈니스에 특히 유용합니다. 하지만 모든 비즈니스에 적합한 지표는 아닙니다. 가령 비행기 예매 앱같은 경우 사용자 정착률이 크게 의미 있진 않겠죠.
내비게이션 vs 검색 비율: 사용자가 제품을 탐색하는 데 검색 창에 지나치게 의존한다면, 이는 제품 디자인이 직관적이지 않다는 신호일 수 있습니다. 사용자가 최소한의 클릭으로 원하는 것을 빠르게 찾을 수 있도록 다양한 레이아웃, 구조, 구성 방식을 실험해 보아야 합니다.
기능 참여율: 기능 참여율은 기능이 얼마나 자주 사용되는지를, 제품을 열어본 사용자 수로 나누어 측정한 지표입니다. 기능 참여율과 리텐션 분석을 결합하면, 특정 기능을 사용하는 사용자가 유지될 가능성이 어떤지 확인할 수 있습니다. 중요한 기능이 거의 사용되지 않는다면, 해당 기능을 더 눈에 띄게 UI를 조정할 필요가 있을 수 있습니다. 사용자에게 해당 기능을 알려주는 알림이나 이메일을 보내는 방법도 고려할 수 있겠죠.
고객 이탈률: 고객 이탈률은 [(월초 고객 수) - (월말에 남아 있는 고객 수)] / (월초 고객 수) 입니다. 예를 들어, 6월 초에 100명의 고객이 있었고 6월 말에 90명의 고객이 남았다면, 이탈률은 10%가 됩니다. 고객의 충성도와 이탈을 평가하고 필요한 개선을 도출하는 데 중요한 지표입니다.
UX 디자인과 데이터 분석 간의 관계
UX 디자인은 단순히 제품을 예쁘게 만드는 것이 아닙니다. 제품을 자연스럽게 사용할 수 있도록 설계하고, 사용자의 기대를 뛰어넘는 결과를 제공해 그 제품에 매력을 느끼게 만드는 것이 목적입니다. 이를 위해서는 예술적 감각뿐만 아니라, 과학적인 데이터 분석과 테스트 과정이 필수적입니다. 데이터를 사용해 인사이트를 얻고 이를 바탕으로 가설을 세운 후, UX 디자인 테스트를 통해 이 가설을 증명해야 합니다.
예를 들어, 운동화 회사의 제품 관리자가 재구매율이 낮다는 사실을 발견했다고 가정해 봅시다. 데이터에 따르면 대부분의 고객은 10개월마다 신발을 구매합니다. 관리자는 고객이 10개월 후에 자동 리마인더를 받으면 재구매율이 높아질 것이라고 가정합니다.
이후 제품 팀은 마케팅 팀과 협력하여 이메일과 같은 메시지를 다양한 고객 그룹에 대해 A/B 테스트하여 재구매율을 높일 수 있는지 실험할 수 있습니다.
UX 분석 대시보드 만들기
UX 분석과 개선 과정에는 조직 전체의 의사 결정이 필요한 경우가 많습니다. 때문에 조직 내에서 원활한 정보 공유와 통일된 접근 방식이 필요합니다. 이때 필요한 것이 분석 대시보드입니다.
좋은 UX 분석 대시보드는 중요한 지표들을 맨 위에 배치합니다. 일일 대시보드에는 세 가지 또는 네 가지 이상의 지표가 포함되지 않도록 하여, 대시보드 확인이 복잡하지 않도록 해야 합니다. 또한 지표는 비즈니스 목표와 직접 연결되어야 하며, 대시보드의 첫 번째 항목을 보면 비즈니스의 상태를 간략하게 확인할 수 있어야 합니다. 그 아래에는 대시보드에 다양한 시간대를 포함시켜, 즉각적으로 해결해야 할 문제와 중장기적인 데이터의 추세를 구분할 수 있는 것이 좋습니다.
마치며
사용자 경험은 제품 성공 또는 실패에 중요한 역할을 합니다. 사용자가 제품에 대해 느끼는 것을 파악하는 일은 데이터 분석가뿐만 아니라 조직 전체에서 이루어져야 합니다. 조직 내 모든 사람들이 해당 데이터를 활용해 사용자 행동에 대한 질문에 신속하게 답할 수 있어야 합니다. UX 분석과 대시보드의 적절한 활용은 비즈니스 성장과 제품 개선에 크게 기여할 수 있습니다. 대표적으로 Amplitude와 같은 솔루션을 이용한다면, 이런 데이터를 손 쉽게 측정하고 관리하고, 또 대시보드를 구성할 수 있습니다. UX 데이터 분석에 대해서 더 깊은 인사이트를 얻고 싶다면 맥소노미 홈페이지에 올라온 다양한 가이드북을 확인해보세요.
콘텐츠 더 읽어보기

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기

Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법
개발 리소스 없이 클릭·페이지뷰 등 사용자 행동을 자동 수집해 빠른 분석과 최적화를 지원하는 Amplitude Autocapture 기능 소개
![[Amplify] CEO Kick-off 세션 스케치 [Amplify] CEO Kick-off 세션 스케치](https://maxonomy-prd-pub-a-s3.s3.ap-northeast-2.amazonaws.com/upload/BoardThumbnail/38757/qFaIlBcF.webp)
[Amplify] CEO Kick-off 세션 스케치
글로벌 No.1 분석 솔루션 Amplitude가 진행하는 연례 컨퍼런스 ✨Amplify 2022✨가 현재 미국 라스베이거스에서 진행중입니다. 프로덕트 팀, 그로스 리더, 분석 전문가, 디지털 분야 경영진, 그리고 데이터 사이언티스트까지 - 모두를 만족시키는 '데이터 분석' 트렌드, 인사이트, 전략, 고객 성공 사례 등 알짜 정보가 가득 준비되어 있다고 하는데요 👏👏 멀리서라도 Amplify의 새로운 소식을 궁금해하실 분들을 위해 Amplitude CEO Spenser Skates의 킥오프 세션을 생생하게 전달 드립니다. 지금 바로 확인해보세요! 👀 💙 AMPLIFY 2022 💙 Kick-off 🎤 Amplitude CEO. Spenser SkatesAmplify 2022가 시작되었습니다. 다시 돌아오게 되어 기쁩니다! Amplify는 라스베이거스에서 생중계로 전 세계를 만나고 있습니다.제품 커뮤니티와 직접 관계를 맺는 것보다 더 강력한 것은 없습니다. 저는 이번 주에 직접적으로, 그리고 온라인으로 우리와 합류하는 수천 명의 리더들로부터 영감을 받았습니다. 왜냐하면 여러분이 스타트업이든 글로벌 기업이든, 디지털 기반 기업이든, 디지털 전환의 시작점에 있는 기업이든, 우리 모두는 한 가지 공통점을 가지고 있기 때문입니다. 우리는 모두 훌륭한 제품을 만들기 위해 노력하고 있습니다.하지만 우리를 가로막고 있는 한 가지 큰 과제가 있습니다. 대부분의 기업은 고객이 무엇을 원하는지 전혀 모르고 있습니다. 저는 이것을 ‘제품 격차’라고 부르는데, 이를 해소하는 유일한 방법은 데이터에 있습니다. 제품 데이터에 액세스할 수 있으면 더 이상 이전의 선례나 추측에 의존하여 의사 결정을 내릴 필요가 없습니다. 언제나 고객이 원하는 바를 정확히 파악하고 예측하여 완벽한 환경을 구축하고 제공할 수 있습니다. 데이터 기반 솔루션을 사용하면 대중이 원하는 것과 제품이 제공하는 것 사이의 격차는 사라지게 됩니다.오늘날의 도전적인 환경에서 데이터 기반 솔루션의 필요성은 그 어느 때보다 높아졌습니다. 이것이 제가 오늘 아침 Amplify 무대에서 발표할 제품 발표에 설레는 이유 중 하나입니다. 교차 기능 팀(cross-functional team)이 데이터를 인사이트로, 인사이트를 행동으로 전환할 때 디지털 제품은 비할 데 없는 수익 성장 효율성을 제공할 뿐만 아니라 시장에서의 승리를 가져다 줍니다.Amplitude CDP: 업계 최초의 인사이트 기반 CDP오늘 우리는 업계 최초로 인사이트 기반의 CDP인 Amplitude CDP 출시를 발표했습니다. 이것은 두 가지 큰 이유에서 중요합니다. 첫째, 이해하기 쉬운 방법이 없으면 데이터를 집계하는 것은 무의미합니다. 최고의 제품 분석 솔루션 Amplitude가 직접 내장되어 있어 팀에서 데이터 품질을 개선하고 고객 인게이지먼트를 개선하기가 더 쉽습니다.둘째, Amplitude는 이미 기존의 CDP에서 사용해왔던 솔루션이었으며, 이는 기업에서 불필요한 비용을 추가로 지불하고 있었음을 의미합니다. 우리는 이것을 CDP 세금이라고 부릅니다. Amplitude는 현재 시장에서 최고의 무료 CDP 플랜을 제공하고 있습니다. 다른 솔루션에서 볼 수 있는 것보다 훨씬 훌륭한 수준입니다.이미 마음에 드는 CDP를 사용하고 있습니까? 괜찮습니다. Amplitude는 BYOD(bring your own data)를 믿습니다. 귀사의 데이터를 가져오십시오. 우리는 귀사의 비즈니스에 적합한 개방형 에코시스템과 기술 스택을 지원합니다. Amplitude CDP에 대한 자세한 내용은 여기에서 확인하실 수 있습니다.Experiment Results: 대규모 실험 분석무엇을 만들지, 무엇을 잘라낼지, 무엇을 두 배로 늘릴지 결정할 때 그 결정을 내리기 위해 실험을 실행하는 것만큼 강력한 것은 없습니다. 이것이 우리가 지난해 엔드 투 엔트 실험 솔루션을 출시한 이유이며, 이 결과에 매우 만족하는 고객을 그 동안 많이 만나왔습니다. Fortune 100대 기업 중 한 고객은 45일 동안 전환율을 크게 향상시켰습니다. 또 다른 고객은 전환율이 낮아짐을 확인하고 새로운 온보딩 플로우를 중단하기로 결정하기도 했습니다.그러나 우리는 많은 큰 기업에서 기존의 체계를 없앨 준비가 되어 있지 않다는 것을 발견했습니다. 하지만 이제는 그럴 필요가 없습니다. 오늘 우리는 기존의 시스템 위에 세계적 수준의 확장 가능한 실험 분석 기능을 추가하길 원하는 팀을 위한 Experiment Results를 발표했습니다. Experiment Results는 팀에서 빠르고 효율적으로 실험을 실행할 수 있도록 셀프 서비스 실험으로 분석 병목 현상을 제거합니다. 기업에서는 자체 A/B 데이터를 Amplitude로 가져와 즉시 실험 분석을 시작할 수 있습니다.Experiment Results에 대한 더 자세한 내용은 여기에서 확인하실 수 있습니다. Amplitude 분석으로 전체 퍼널 성능 측정우리는 항상 우리의 제품을 개선하기 위해 노력하고 있습니다. 이번에 발표한 Amplitude Analytics의 몇 가지 새로운 기능은 기업에서 마케팅 프로그램과 제품 결정이 주요 비즈니스 결과에 미치는 영향을 더 쉽게 발견할 수 있도록 돕습니다. 제품 팀이 언제나 Amplitude 관련 업무의 중심에 있지만, Amplitude 고급 사용자의 15%가 마케터라는 사실에 아마 놀라실 것입니다. 기존에는 제품 데이터와 캠페인 데이터 사이의 연결이 끊어져 제품 팀과 마케팅 팀이 단절되어 있었고, 인사이트도 불완전했습니다. 오늘 처음으로, Amplitude는 마케팅 팀과 제품 팀 모두를 단일 시스템으로 통합하여 그들의 노력이 성장을 이끄는 방법을 이해하게 되었습니다.새로운 캠페인 리포팅 기능은 고객이 어떤 구매 채널에서 유입되는지, 마케팅 프로그램이 제품 KPI에 어떤 영향을 미치는지에 대한 인사이트를 팀에 제공합니다. 결과 기반 지표를 사용하면 제품 팀과 마케팅 팀이 판매 또는 수익과 같은 행동 결과를 쉽게 연결할 수 있는 표준 지표 세트를 빠르게 생성할 수 있습니다. 또한 새로운 데이터 테이블을 통해 사용자는 보다 유연한 보고를 위해 단일 뷰에서 여러 KPI를 측정할 수 있으므로 마케팅 팀 및 제품 팀은 전체 고객 여정에 걸친 지표를 나란히 분석할 수 있습니다.오늘 발표된 Amplitude Analytics의 자세한 내용은 여기에서 확인하실 수 있습니다. Snowflake와의 파트너십 확대Amplify는 우리의 훌륭한 파트너 중 하나인 Snowflake와의 발표 없이는 완성되지 않았을 것입니다. 고품질 데이터를 Amplitude로 더 쉽고 빠르게 가져올 수록 Amplitude는 더욱 강력해집니다. 새로운 데이터의 공유와 통합을 통해 Snowflake 고객은 Amplitude를 사용하여 Snowflake 인스턴스를 종료하지 않고도 고객 여정에 대한 실행 가능한 인사이트를 얻을 수 있습니다. 이를 통해 조직은 제품 데이터를 유연하게 수집 및 처리하고 가치를 창출하여 가장 중요한 것, 즉 훌륭한 고객 경험 구축에 집중할 수 있습니다.여기에서 오늘의 Snowflake 발표에 대해 자세히 알아보세요.Amplify는 아직 끝나지 않았습니다! Amplify 2022는 Amplitude 제품 팀의 흥미로운 키노트 세션, 고객의 브레이크아웃 세션, 에미상을 수상한 코미디언 Hasan Minhaj의 마무리 키노트 세션 등 유익한 세션으로 내일도 계속됩니다. 이 곳에 직접 참석해주신 분들과는 최대한 많이 만나고 싶으니 저를 보시면 인사 부탁 드립니다. 아쉽게도 올해는 라스베이거스에서 저희와 함께하지 못하셨다면, 라이브 스트림과 트위터를 팔로우해 주십시오. 내년에는 여러분 모두를 직접 만나 뵙기를 바랍니다. Spenser Skates는?Spenser는 Amplitude의 CEO이자 공동 설립자입니다. 그는 텍스트 음성 변환 앱인 Sonalight를 개발하면서 더 나은 제품 분석 솔루션의 필요성을 직접 경험했습니다. 그리고 이러한 필요성으로 Amplitude를 만들어, 모든 사람이 사용자 행동에서 더 나은 제품을 만들 수 있도록 돕고 있습니다.

사례와 함께 보는 리텐션율(Retention Rate)
리텐션 지표의 실제 사례
.webp)
PM이라면 꼭 알아야 할 데이터 해석 오류 7가지
데이터 기반 의사결정에서 흔히 발생하는 7가지 인지 편향과 PM을 위한 실전 대처법