앰플리튜드

AI 검색 시대의 필수 도구: Amplitude AI Visibility 출시

Team MAXONOMY 2025.11.13

AI 검색 시대의 필수 도구: Amplitude AI Visibility 출시

SEO를 넘어 GEO, AEO시대의 시작


SEO(Search Engine Optimization: 검색엔진 최적화)는 아주 중요한 디지털 마케팅 활동 중 하나였습니다. SEO란, 검색엔진 최적화라는 뜻으로 구글, 네이버와 같은 검색 엔진에서 우리의 브랜드가 잘 노출될 수 있도록 하는 활동을 의미합니다. 가령, 어떤 고객이 ‘마케팅 솔루션 추천’이라고 검색한다면, 이 검색어에서 최상단에 노출되는 브랜드 일수록 해당 고객과 연결될 가능성이 높겠죠. 게다가 해당 고객은 마케팅 솔루션에 관심이 있는 고객이라 보통의 다른 고객보다 훨씬 더 마케팅 솔루션을 구매할 가능성이 높습니다. 이를 ‘고의도’ 고객이라고 합니다.


이런 중요한 마케팅 활동이었던 SEO가 변하고 있습니다. AI의 등장으로 고객 여정이 급변하고 있기 때문인데요. 무언가를 알고 싶을 때, 사람들은 더 이상 구글 같은 검색 엔진에만 의존하지 않고, ChatGPT, Claude, Google AI Overview와 같은 AI 도구에 질문하기 시작했습니다. 이러한 변화는 매우 빠르게 일어나고 있으며, 일부 보고서에 따르면 웹 브라우징 세션 10개 중 6개에 AI 검색이 포함되어 있다고 합니다. 최근엔 이런 AI 검색 결과에 잘 노출될 수 있게 하는 활동을 AEO(AI Engine Optimization) 혹은 GEO(Generative Engine Optimization)라고 부르고 있습니다.


요즘의 AI도구는 출처 표기를 기본적으로 제공하고 있지만, 검색 엔진에 비해 훨씬 높은 수준으로 개인화되어있고, 입력하는 질문(프롬프트)에 따라 응답이 크게 변합니다. 때문에 자신의 브랜드가 AI 검색 전반에 걸쳐 어떻게 노출되고 있는지, 혹은 왜 경쟁사들이 계속 우위를 점하는지 파악하는 것은 쉽지 않습니다. 게다가 AI 기반 검색 시스템은 전통적인 검색 엔진보다 연결하는 사이트가 적은 경향이 있어, AI 응답에 등장하지 않는 브랜드는 고의도 고객과의 접점을 놓칠 위험이 있습니다.







Amplitude AI Visibility



이러한 새로운 검색 환경에 대응하고 브랜드 가시성을 확보할 수 있도록, Amplitude가 AI Visibility를 출시했습니다! AI Visibility는 AI 검색 환경에 우리 브랜드가 얼마나 어떻게 노출되고 있는지 정확히 이해할수 있도록 도와줍니다. Amplitude 플랫폼에 직접 구축되어 있어, AI 검색 성과를 실제 비즈니스 결과 및 수익과 연결할 수 있습니다.


가장 주목할 만한 점은, Amplitude AI Visibility는 무료로 제공된다는 것입니다. 다른 AEO 도구가 비용이 많이 들거나, 기존 SEO 제품에서 추가적인 옵션으로 제공되는 것과 차별화됩니다. Amplitude 고객은 모든 플랜에서 이 기능을 사용할 수 있으며, 비고객에게도 제한된 무료 경험을 제공합니다.


AEO 무료 분석하러 가기









AI Visibility 자세히 알아보기


1. 검색 결과 페이지가 없는 세상을 위한 새로운 SEO



앞서 설명했지만, Amplitude AI Visibility의 핵심은 'AI 채팅을 위한 SEO'입니다. 기존 SEO가 구글 검색 결과 페이지(SERP) 순위 경쟁이었다면, 이제는 AI의 답변에 우리 브랜드를 더 자주, 더 긍정적으로 등장시키는 것이 새로운 목표가 되었습니다. 이는 단순히 트렌드를 따르는 것이 아닌, 생존을 위한 필수 역량입니다.


점점 더 많은 고객이 구체적인 질문을 AI에게 직접 던지고 있습니다. 이때 AI의 답변에 우리 브랜드가 포함되지 않는다면, 사실상 시장에 존재하지 않는 것과 마찬가지입니다. AI 검색은 더 이상 먼 미래가 아니며, 이 새로운 전장에서 보이지 않는 브랜드는 고객을 경쟁사에 빼앗길 수밖에 없습니다.


"AI 검색은 더 이상 미래가 아니라 브랜드 노출의 새로운 최전선입니다. 이제 브랜드가 AI 응답에 등장하지 않는다면 존재하지 않는 것과 마찬가지입니다."



2. 경쟁사 현황 시각화



'경쟁사가 우리보다 AI에서 더 잘하고 있을까?'라는 막연한 생각은 이제 끝내세요. AI Visibility는 LLM에서 자사 브랜드가 경쟁사와 어떻게 비교되는지 명확한 데이터를 제공합니다. 특히 주제별 경쟁력을 한눈에 비교할 수 있는 시각적 매트릭스(visual matrix)를 통해 어떤 영역에서 경쟁사가 우위를 점하고 있는지 직관적으로 보여줍니다.


예를 들어, LLM에게 "사용자 온보딩 구축 방법을 알려줘. 상호작용 요소가 많이 들어가면 좋겠어"라고 물었을 때, 경쟁사인 Pendo는 1위로 등장하는 반면 Amplitude는 마지막 순위에 그쳤습니다. 이는 Pendo가 해당 기능으로 더 강하게 인식되고 있음을 보여주는 데이터입니다. 그렇다면, 경쟁사와의 격차를 줄이기 위해 어떤 콘텐츠에 집중해야 할지 명확하게 전략을 설정할 수 있는 것이죠. 이처럼 구체적인 데이터는 막연한 불안감을 실행 가능한 인사이트로 전환합니다.



3. AI 언급부터 실제 '매출'까지 모든 과정을 연결


AI Visibility의 가장 강력한 차별점은 독립적인 도구가 아니라 Amplitude 분석 플랫폼에 완벽하게 통합되어 있다는 것입니다. 이는 AI에서의 브랜드 노출도를 실제 비즈니스 성과와 직접 연결할 수 있다는 것을 의미하죠. 다른 AEO 도구가 단순히 노출 횟수만 보여주는 반면, AI Visibility는 한 걸음 더 나아갑니다.


AI Visibility와 Session Replay를 결합하면, AI 채팅에서 유입된 사용자의 실제 세션을 영상처럼 재생해볼 수 있으며, AI Visibility와 Activation 기능을 결합하면, AI 유입 코호트를 만들어 리타겟팅 캠페인을 진행할 수 있습니다. 즉, "AI 노출도를 높이는 노력이 실제 매출 증대로 이어졌는가?"라는 핵심 질문에 명확한 데이터로 답하고 마케팅 활동의 ROI를 투명하게 증명할 수 있게 되는 것입니다.







AI Visibility 활용하기


AI Visibility는 브랜드가 AI 환경에서 성공적인 고객 확보 플랫폼을 구축할 수 있도록 돕는 세 가지 핵심 단계를 제공합니다.


Step 1: AI의 브랜드 언급 파악하기(Analyze)

AI Visibility는 브랜드를 언급하는 프롬프트의 백분율로 표시되는 AI 가시성 점수를 정량화합니다. 가령, '제품 분석 도구 추천'과 같은 프롬프트를 입력하면 Amplitude는 75%의 확률로 언급되었습니다.


  1. 가시성 점수 및 경쟁사 비교 확인: 수백 개의 프롬프트에서 AI 가시성 점수를 정량화하고, 주요 경쟁사 대비 브랜드 노출 순위와 점유율을 헤드투헤드(head-to-head) 방식으로 비교합니다. 경쟁사 대비 약점을 식별할 수 있습니다.
  2. 프롬프트 및 소스 분석: AI가 우리 브랜드를 추천하는지, 혹은 비추천하는지 감정을 모니터링하고(출시 예정 기능), LLM이 응답을 생성할 때 인용한 외부 웹사이트 소스를 검토합니다. 이 기능을 활용하면 경쟁사를 언급하지만 우리 브랜드는 언급하지 않는 페이지를 식별하여, 명확한 콘텐츠 전략을 수립할 수 있습니다.
  3. 약점 영역 식별: 최근에 출시되어, LLM이 아직 인지하지 못한 주제, 기능들을 식별하여 마케팅 콘텐츠를 보강할 필요성을 알 수 있습니다.



Step 2: 필요한 조치 파악하기(Action)

점수를 아는 것만으로는 충분하지 않습니다. AI Visibility는 인사이트를 행동으로 전환하는 기능을 제공합니다 (일부 기능은 출시 예정)


  1. 맞춤형 개선 권고 받기: AI 응답에서 경쟁사가 우위를 점하는 주제를 파악하고, 격차를 줄이기 위한 맞춤형 권장 사항을 제공받습니다.
  2. 콘텐츠 시뮬레이션 및 생성: 웹사이트에 변경 사항을 적용하기 전에 시뮬레이션 기능을 통해 변경 사항을 테스트하고 LLM이 어떻게 반응하는지 몇 분 안에 확인할 수 있습니다. 또한, 트래픽 데이터를 참조하여 고품질 콘텐츠를 생성하는 기능도 제공합니다.


Step 3: 비즈니스 성과와 연결(Accelerate)

AI Visibility는 단순한 검색 분석 도구가 아닙니다. Amplitude 플랫폼의 일부로서, AI 검색 성과를 실제 고객 행동 데이터와 연결합니다.


  1. 트래픽 및 전환 추적: AI를 통해 유입된 실제 사용자 트래픽 데이터를 추적하고, 이러한 AI 유입 방문자가 퍼널, 여정, 코호트 내에서 어떻게 행동하는지 측정합니다.
  2. ROI 입증: AI 검색에서 노출 개선이 트래픽 증가와 전환 경로 분석으로 이어지는지 확인하여, 명확한 수익 지표로 객관적 ROI를 입증할 수 있습니다.
  3. 플랫폼 연동 활용: 분석, 세션 리플레이, 실험, 활성화와 같은 다른 도구와 연결하여, AI 검색에서 유입된 사용자 세션을 확인하거나, AI 유입 코호트를 구축하여 타겟 캠페인을 실행할 수 있습니다.








지금 바로 시작하기


AI 검색은 더 이상 미래의 트렌드가 아닙니다. 이미 새로운 메인 채널이 되었습니다. 빠르게 움직일 수록 초기에 우위를 점할 수 있습니다.

지금 바로 무료로 AI Visibility를 사용해보고, AI 응답에서 경쟁사를 앞질러 보세요.






콘텐츠 더 읽어보기

logo

팀맥소노미

YOUR DIGITAL MARKETING HERO

비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요

관련 글 보기

사례와 함께 보는 리텐션율(Retention Rate)

사례와 함께 보는 리텐션율(Retention Rate)

리텐션 지표의 실제 사례

MoM(월별 성장률) 분석시 저지르는 일반적 3가지 실수

MoM(월별 성장률) 분석시 저지르는 일반적 3가지 실수

월별 성장이란 무엇입니까?월별 (MoM) 성장은 특정 메트릭 값의 변화를 전월 값의 백분율로 표시합니다.월별 성장은 월별 수익, 활성 사용자, 구독 수 또는 기타 주요 지표의 성장률을 측정하는 데 자주 사용됩니다. 모바일 앱, SaaS 제품 또는 웹 사이트와 같은 디지털 제품을 작업하는 경우 MoM 활성 사용자 증가에 관심이 있을 것입니다. 이는 제품 또는 회사의 성장과 성공에 대해 이야기하는 가장 일반적인 방법입니다.MoM 성장률을 계산하는 방법한 달 동안의 월별 성장을 계산하려면 이번 달의 총 사용자 수와 지난 달의지난달의 총 사용자 수의 차이를 취한 다음 이를 지난달의 합계로 나누면 됩니다. 동일한 공식을 사용하여 주별 성장 또는 전년 대비 성장을 계산할 수 있습니다. 한 달 동안의 성장률을 계산하는 대신 6개월 동안의 MoM 성장률을 계산하고 싶다고 가정 해 보겠습니다. CMGR (월간 복합 성장률) 을 계산하려는 경우입니다.관련 자료 : 활성 사용자는 누구입니까? 사용자 분석을 위한 전략Compound Monthly Growth Rate (CMGR) 공식CMGR은 해당 기간 동안 매달 일정한 속도로 성장한다고 가정하여 특정 기간 동안의 성장률을 설명합니다. 활성 사용자가 다음과 같이 증가했다고 상상해보세요.CMGR을 계산하려면 위의 숫자를 다음 공식에 대입합니다.예를 들면 다음과 같습니다.CMGR은 월별마다 다르지만 위의 전체 기간 동안 20%입니다. 예를 들어 1월부터 2월까지의 MoM 성장률은 10%에 불과한 다음 2월부터 3 월은 36%로 점프합니다. CMGR을 사용하면 1월부터 6월까지 매달 일정한 성장률로 성장하고 있다고 가정합니다. 이 예에서 이는 다음을 의미합니다.이제 다음 단계로 넘어갑시다.위에서 과거 기간 동안 CMGR을 계산했습니다. 5개년 사업 계획을 세우고 사업이 어떤 모습 일지에 대한 프로젝트를 계획한다고 가정해 보겠습니다. 이대로라면 2022년 12월까지 활성 사용자 수는 5십만 명을 넘을 것입니다.피해야 할 MoM 성장과 관련된 3가지 일반적인 실수성장 모델을 구축할 때 부주의한 실수를 하는 것은 생각보다 흔합니다. 다음은 MoM 데이터 작성 시, 저지르는 3가지 일반적 실수입니다.1. MoM 성장으로 모델링 된 작은 절댓값 앱이나 제품의 사용자 수가 적으면, MoM 달성을 훨씬 쉽게 이룰 수 있습니다. 즉, 적은 수의 MoM 성장에 대한 내러티브를 구성하는 것이 더 쉽고 비즈니스가 성장함에 따라 그 비율을 유지하기가 더 어렵습니다.이 예에서는 2018년 1월부터 2018년 6월까지 매월 20% 의 성장을 경험하고 있습니다. 하지만 절대 수치로 보면 100명의 활성 사용자에서 249명의 활성 사용자로만 증가하는 것입니다. 여기서 문제는 이 비율 증가가 확장되지 않는다는 것입니다. 한 번의 언론 멘션으로 100 명에서 120 명의 월간 활성 사용자 확보는 쉽게 할 수 있습니다. 그러나 한 달에 활성 사용자가 1,000,000명에서 1,200,000명으로 20 % 증가하려면 강력한 성장 엔진이 필요합니다.핵심 요점 : 사용자 수가 적을 때엔 MoM을 주시할 수 있지만 사용자 수가 더 많아지면 참여도 지표 , stickness 및 사용자 행동 데이터를 살펴봄으로써 성장이 장기적으로 지속될 것인지를 알려주는 기본 메커니즘 구성에 집중해야 합니다.2. MoM 성장으로 모델링 된 비일관된 성장성장은 예측할 수 없습니다. 한 달은 MAU를 두 배로 늘리고 다음 달에는 변화 없이 그대로 유지될 수 있습니다. 이런 일이 발생한다면 일관된 CMGR로 모델링하여 변동하는 성장을 모순되게 만드는 것은 실수입니다.여기에서 CMGR이 20% 이지만 특정 기간 동안 (5월부터 6월까지)만 20% 근처에 있다고 가정해 봅시다. 그 외에는 2% 성장과 82% 성장 사이에서 크게 변동하고 있습니다. 결론은 다음 달 성장률이 얼마인지 알지 못한다는 것입니다. 성장률은 도처에 있지만 데이터는 여전히 무언가를 알려줍니다. 앱을 위한 일관된 성장 엔진을 구축하지 않았던 거죠.성장이 있는 달과 성장이 없는 달의 차이를 모를 가능성이 높습니다.핵심 요점 : 성장이 일관되지 않은 경우, 단일 CMGR보다는 월별 성장률의 추세로 성장을 논의하는 것이 더 정확합니다.3. MoM 성장으로 모델링 된 선형 성장귀하의 비즈니스는 성장하고 있으며 지속적으로 성장하고 있습니다. 다만 선형 성장을 기하급수적인 성장으로 착각하지 마십시오.6개월 동안 사용자가 10,000 명에서 20,000 명으로 두 배 증가했다고 가정해 보겠습니다. 이는 15%의 Mom 성장률을 의미합니다. 자세히 살펴보면 문제가 나타납니다. 시간이 갈수록 성장률은 둔화되는 것 같습니다. 숫자가 커짐에 따라 성장이 감소하는 것은 성장이 기하급수적이지 않다는 신호이며 아마도 더 선형적일 것입니다. 여기서는 15% MoM이 성장하고 있다고 말하는 대신 매월 2,000명의 활성 사용자를 추가한다고 말함으로써 절댓값을 고수하는 것이 더 정확합니다.핵심 사항 : 모든 성장이 동일하지는 않습니다. 성장이 선형으로 발생하는 경우 절대 사용자 수의 월별 성장을 참조하여 이를 수용하고 정확하게 설명하십시오. 그런 다음 이러한 통찰력을 사용하여 비선형 성장을 실현할 기회를 식별하십시오.관련 자료 : 시간이 지남에 따라 핵심 지표를 조정해야 할까요?단기 성장을 추적하면 장기적인 성공을 거둘 수 있습니다.월별 성장은 현재 성과를 정확하게 모델링하고 성공을 벤치마킹하고 예측하는 데 매우 유용합니다. 당신이 하고 있는 일을 알고 있고 회사의 장기적인 미래에 전념하고 있다는 거죠.성장률이 일정하거나 하향 조정되면 실망스러워 보일 수 있지만, 보고 싶은 데이터가 아닌 경우에도 모든 데이터에는 가치가 있다는 것을 기억하십시오. 기하 급수적인 성장은 하룻밤 사이에 일어나지 않으며 저절로 일어나지 않습니다.퀄리티 있는 데이터 산출은 퀄리티 있는 데이터 수집에서 시작됩니다.품질이 낮은 데이터를 지속적으로 살펴보면 MoM과 같은 중요한 지표를 정확하게 해석하기가 훨씬 어려워집니다. 분석을 실행하는 작업에 너무 깊이 빠져 들기 전에 먼저 강력한 데이터 시스템 인 MVI (Minimum Viable Instrumentation)를 만들어야 합니다.이를 통해 비즈니스 및 분석 목표를 달성하기 위해 따라야 하는 특정 데이터 프로세스를 식별할 수 있습니다.두 가지를 정의하여 시작하세요.일일 활성 사용자와 같은 중요한 용어에 대한 정의특정 비즈니스 목표고객이 이러한 목표 (예: 전환)를 달성하기 위한 올바른 방향으로 안내할 고객 여정의 경로를 신중하게 고려하여 측정하려는 이벤트를 정확히 찾아냅니다. 바로 추적하려는 터치 포인트입니다. 목표 달성에 중요한 것에 집중하고 나머지는 제거하십시오.다음은 팀의 심각한 데이터 유효성 검사 문제를 방지하기 위해 따라야 할 5 가지 주요 원칙입니다.모든 것을 추적하려 하지 마세요. 불필요한 데이터는 지저분하고 추적하기가 거의 불가능합니다. 대신 20 ~ 200개의 고객 주요 여정과 관련된 이벤트를 일관되게 추적하십시오.체계적으로 유지하십시오. 데이터와 이에 대한 정의는 팀원 모두에게 매우 깨끗하고 이해하기 쉬워야 합니다.d-1부터의 데이터를 정의하십시오. 데이터 구조를 설명하는 몇 가지 문서를 작성하는 것이 좋습니다.분석 플랫폼 내에서 사용자 식별이 작동하는 방식을 이해합니다. 또한 무의미하게 지속 방문하는 가짜 "새 사용자"를 방지하기 위해 장치 또는 기타 자격 증명으로 익명 사용자를 인식할 수 있는 시스템이 있어야 합니다. 예를 들어 Amplitude(앰플리튜드)는 "amplitude_ID"식별자로 이 문제를 해결합니다. 이 식별자는 익명인 경우에도 반복 방문 사용자를 포착합니다.숫자, 날짜, 국제 문자 및 지오 코딩 값과 같은 자동 서식 변수를 사용하여 일관성 있고 정확하게 분석하세요.콘텐츠 더 읽어보기마케터가 Amplitude를 사용해야 하는 10가지 이유그로스 마케팅이란? 뜻, 성공 사례, 필수 전략 총정리제품 성과지표 안내서

🏃💨이탈률(Bounce Rate), 낮을수록 좋을까?🤔

🏃💨이탈률(Bounce Rate), 낮을수록 좋을까?🤔

대부분의 마케팅 지표는 그 의미가 명확합니다.예를 들어, '블로그의 방문자 수'라는 지표는 낮은 것보다 높은 것이 좋습니다. 반대로 '주간 뉴스 레터 구독 취소자 수'는 낮을수록 좋습니다. 이렇게 대부분의 마케팅 지표는 '높을수록 좋다' 혹은 '낮을수록 좋다'라는 명확한 평가 기준이 있습니다.그렇지만 이탈률(Bounce Rate)에는 그런 명확한 평가 기준이 없습니다. 본 포스팅에서는 이탈률을 어떻게 계산하는지, 어떻게 측정하는지, 높은 이탈률이 좋은 경우는 언제인지에 대해 다루도록 하겠습니다.✅ 키 포인트 ✅페이지 이탈이란, 방문자가 어떤 페이지에 접속한 후, '같은 사이트의 다른 페이지'를 탐색하지않고 떠나는 행위를 말합니다.이탈률은 페이지 유형 및 산업에 따라 다릅니다.이탈률에 대한 보편적인 기준은 없으며, 페이지의 맥락이 이탈률의 가장 중요한 분석 기준입니다.이탈률(Bounce Rate)이란? 🤔웹 사이트의 이탈률은 한 페이지에 접속한 후 떠나는 방문자의 비율입니다. 즉, 방문자가 한 페이지를 보고 같은 사이트의 다른 페이지를 탐색하는 대신, 뒤로 가기를 누르거나, 탭을 닫거나, 외부 링크로 옮기는 등 페이지를 떠나는 행위를 말합니다.이탈률은 웹 사이트의 전반적인 사용자 경험을 평가하는 중요한 지표입니다. 웹 사이트의 로딩이 느리거나, 디자인이 직관적이지 않는 등의 문제가 있다면, 해당 사이트의 이탈률은 높게 나타날 것입니다. 콘텐츠 역시 이탈률을 결정짓는 중요한 요소입니다. 가치 있는 콘텐츠를 제공하여 방문 목적을 충족시킨다면, 방문자를 페이지에 머물게 할 수 있을 것입니다. 하지만 이탈률이 높다고 꼭 나쁜 것만은 아닙니다. 방문자의 의문점을 효과적으로 해소해주는 콘텐츠를 제공했을 경우, 방문자가 굳이 해당 사이트의 다른 페이지까지 탐색하지 않아도 되니, 이탈률이 높게 나타날 것입니다. 이런 이유로 인한 높은 이탈률은 해당 사이트에 대한 신뢰도가 높다는 증거로 볼 수도 있습니다.반면, 이커머스 사이트의 상품 페이지 이탈률이 높다면, 문제가 있다고 볼 수 있겠죠.이탈률 계산법 🧮이탈률은 특정 기간 동안의 한 페이지 세션 수(Single-page Sessions)를 전체 세션 수(Total Sessions)로 나누어 간단히 확인할 수 있습니다.이탈률(Bounce Rate) = 한 페이지 세션 수(Single-page Sessions) / 전체 세션 수(Total Sessions)예를 들어, 클라우드 소프트웨어 업계의 트렌드를 다루는 기술 블로그를 운영하고 있다고 가정해 보겠습니다. 지난 달에 해당 웹 사이트에서 100,000개의 전체 세션이 발생하였고 그 중 특정 한 페이지 세션은 10,000개가 발생하였습니다. 이 경우 이탈률은 10%로 계산할 수 있습니다. Amplitude와 같은 디지털 분석 도구를 사용한다면, 이탈률을 자동으로 측정할 수 있습니다.이탈률 VS 종료율 🤼몇몇 사람들은 이탈률과 종료율을 구분하지 않고 사용하기도 합니다. 하지만 이 두개는 서로 다른 지표입니다. 이탈률은 한 페이지만 보고 이탈하는 방문자 수를 측정하는 반면, 종료율은 방문자가 사이트의 적어도 하나의 다른 페이지를 탐색하다가 해당 페이지를 만났을 때 떠나는 정도를 측정합니다. 예를 들어, 사용자 여정을 추적해보니 특정 페이지를 방문하면 급격하게 사이트를 이탈한다는 사실을 발견한다면, 해당 페이지의 종료율이 높다고 볼 수 있습니다. 이 경우 해당 페이지를 면밀히 살펴보고 페이지의 종료율이 높은 근본 원인을 찾아야할 것입니다.이탈률 평가 기준은? 🧐이상적인 이탈률은 얼마일까요? 평균 이탈률은 페이지 유형, 업종 및 기타 요소에 따라 다릅니다. Customedialabs의 조사결과에 따르면 전자 상거래 및 소매 사이트의 평균 이탈률은 20%에서 45% 사이입니다. 반면, 블로그나 위키 페이지는 65%에서 90% 정도의 이탈률을 나타냅니다. B2B 웹 사이트의 경우엔 평균 이탈률이 25%에서 55%사이입니다.블로그와 위키 페이지는 일반적으로 방문자들이 만족스러운 정보를 찾은 후 떠나는 경우가 많기 때문에 이탈률이 높게 나타납니다. 전자 상거래 사이트는 일반적으로 유사상품보기, 쿠폰 받기, 리뷰 확인하기 등 추가적인 탐색을 취하도록 설계되어있기 때문에 평균 이탈률이 낮게 나타납니다. 이렇게 페이지 유형에 대한 이해를 가지고 접근해야 이탈률을 제대로 평가할 수 있습니다.산업도 평균 이탈률을 결정짓는 요소입니다. 음식 및 레스토랑 관련 사이트는 모든 산업 중에서 이탈률이 높은 편이지만, 부동산이나 쇼핑 페이지는 이탈률이 낮습니다.결론적으로, 콘텐츠 및 산업의 맥락을 고려하지 않고 웹 사이트의 이탈률을 평가하는 것은 불가능합니다.이탈률을 낮추는 법 📉이탈률을 낮추기 위해선 방문자에게 더 가치 있는 경험을 제공해야합니다. 그 세부적인 방법은 다음과 같습니다.로딩 속도 높이기긴 로딩 시간을 좋아하는 방문자 없습니다. Google에 따르면 페이지 로드 시간이 1초에서 3초로 증가한다면, 이탈률은 32% 증가한다고 합니다. 로딩 속도는 구글 서치 콘솔에서 제공하는 모바일 및 웹 페이지 경험 지표에서 확인할 수 있습니다. '제대로 렌더링되지 않은 코드 조각' 등과 같이 느린 로딩 속도의 원인이 될만한 요소를 찾고 개선해야합니다.방문자 기대 충족페이지의 콘텐츠가 방문자에게 정말 가치 있는 것인지 확인해보세요. 의미없는 콘텐츠를 접한 방문자가 이탈하는 것은 어쩌면 당연합니다. 방문자의 기대를 충족 시키는 것은 검색 노출, 광고, 이메일 캠페인을 통한 유입 등의 측면에서도 중요합니다.사용자 경험 (UX) 개선아무리 로딩 속도가 빠르고 좋은 콘텐츠를 제공한다고 해도 UX가 혼란스럽고 불편하다면 방문자가 이탈할 가능성이 높습니다. 높은 이탈률을 나타내는 페이지가 있다면 해당 페이지의 UX를 점검할 필요가 있습니다. 귀찮은 스팸 팝업 광고가 너무 많은 뉴스 페이지나, 콘텐츠를 읽으려면 이메일 주소를 먼저 제출해야 하는 페이지가 대표적인 예시입니다.이탈률은 곧 페이지의 가치입니다 🧐이탈률은 페이지가 방문자에게 정말 가치있는지 판단하는 기준 중 하나입니다. 그렇지만, 이탈률에 일반적인 기준은 없다는 것을 기억하세요. 가치 있는 페이지 경험을 제공했다고 해도 이탈률은 다양하게 나타날 수 있습니다. 핵심은 페이지 경험 개선에 집중하는 것입니다.콘텐츠 더 읽어보기리텐션 캠페인 효과를 최대화하는 8가지 방법데이터기반 고객 여정 설계마케팅 캠페인의 고객 참여를 높이는 8가지 팁

Amplitude Feature Experiment:  데이터 기반 실험의 시작

Amplitude Feature Experiment: 데이터 기반 실험의 시작

실험이 중요한 이유디지털 서비스를 운영하다 보면 다음과 같은 질문과 마주하게 됩니다. “이 버튼을 바꾸면 클릭률이 더 높아질까?” “새로운 기능을 모든 사용자에게 바로 공개해도 될까?” “프리미엄 사용자에게만 실험적으로 먼저 공개해보고 싶은데, 어떻게 관리하지?”대부분 경우 직감이나 내부 회의로 결정을 내리지만, 그 결과가 실제로 사용자 경험과 KPI에 긍정적인 영향을 주는지 알기 어렵습니다. 이로 인해 향후에 추가적인 실험 테스트를 수행하기 어려운 환경이 조성되어 버리기도 합니다.또한, 서비스를 운영하다보면, 서비스의 성장을 위해 여러 고민과 의사결정이 필요한 순간이 옵니다.✅ 새로운 기능을 모든 사용자에게 배포하기엔 위험할 때✅ 디자인이나 UI를 바꾸고 그 효과를 정확히 측정하고 싶을 때✅ 특정 사용자 그룹에게만 실험적으로 기능을 보여주고 싶을 때✅ 실험 결과를 클릭률, 전환율, 리텐션율 등의 지표로 분석하고 싶을 때따라서, 개발단의 리소스를 최소화하면서, 실제 사용자 데이터 기반의 결과 분석이 가능한 실험 체계를 도입할 필요가 있습니다. Amplitude Experiment는 고객에게 제공하는 기능 on/off 토글링부터 A/B 테스트, 점진적 릴리즈, 결과 분석까지 하나의 워크플로우 안에서 지원함으로써 "기능 실험 → 결과 측정 → 의사결정"을 오차없이 빠르게 수행할 수 있도록 도와줍니다.Amplitude Experiment에서는 다음 두 가지 방식으로 실험을 구성할 수 있습니다.Feature ExperimentWeb Experiment이름만 보아서는 비슷해 보이지만, 실제 사용 목적과 운영 방식에는 뚜렷한 차이가 있습니다. 이번 포스팅에서는 이중 Feature Experiment에 대해 집중적으로 알아보겠습니다.Feature Experiment: 기능 중심 실험Feature Experiment는 코드 기반으로 운영되는 실험 방식입니다. 개발자가 직접 고객에게 보여줄 화면을 만들거나 신규 기능을 구현한 후에 이것을 일부 고객들에게만 노출하고 원하는 효과를 보았는지 확인하고자 할 때 활용합니다.개발단에서는 변경된 화면이나 기능을 적용하고 예외 처리를 추가하여 특정 사용자에게만 노출될 수 있도록 구현하고, 실무자는 원하는 고객군과 모수 비율을 Amplitude 콘솔에서 언제든 수정하여 테스트를 수행 해 볼 수 있습니다.개발단 기능- 화면 구성- 조건 처리실무단 기능- 모수집단 선정, 비율 선택- 전환 목표 지정, 분석 방식 선정- 테스트 시작, 종료, 기간 선정- 실험 분석 결과 확인- Analytics로 추가 심화 분석 수행예시로 이해하는 Feature Experiment 활용1) 신규 기능 가설 세우기어느 날, 개발자가 추천 알고리즘 로직 개선 작업을 완료 하였습니다. 이 알고리즘을 서비스에 적용하면 굉장한 효과를 보여줄 것이라 기대하고 있지만, 바로 운영계에 적용하기에는 어떤 사이드 이펙트가 있을지 예상할 수 없었습니다. 가령 잘못된 상품 추천으로 고객에게 안 좋은 경험을 제공하면 이탈로 이어질 수 있죠.따라서, 전체 고객이 아닌, VIP 고객 중 10%에게만 새 알고리즘을 적용하고 클릭률, 구매율을 측정하기로 하였습니다. 결과 데이터가 나머지 고객들에 비해 5%이상 증가한다면 전체 사용자에게 확대 배포하는 거죠.2) 개발단 작업처음 실험을 진행하는 것이라면 Amplitude Experiment SDK를 적용하는 작업이 필요합니다. 신규 추천 알고리즘은 이미 개발 완료된 상황이고 SDK 적용은 큰 시간이 소모되지 않기 때문에 거의 바로 실험 진행이 가능합니다.(Amplitude Experiment SDK 라이브러리 탑재 및 초기화 후 고객마다 서로 다르게 제공하고자 하는 위치에서 조건문(if)을 구성)Android 적용법1. 라이브러리 추가 (build.gradle에 dependencies 추가)2. 초기화 (Application단에서 초기화)3. 현재 사용자의 experiment 관련 정보 수신4. 고객이 보유한 flag 값에 따라 제공 여부 결정( 새로운 추천 알고리즘이 제공될 10%의 VIP 고객은 "on"으로, 그 외 고객들은 모두 "off"로 적용)3) Amplitude 설정(Experiment UI 구성)3-1) Deployment 생성하기운영하는 서비스는 여러 환경으로 구분되어 있습니다.개발계(development) / 내부 QA 테스트 수행 환경(staging) / 운영 환경(production)Android, iOS, Web 등 제공 플랫폼 환경실험을 진행하고자 할 때, 특정한 환경에서만 진행하실 수도 있고, 여러 환경에서 동시에 진행해 보실 수도 있을 겁니다. 이 때, 어떤 환경에 실험을 배포할 것인지를 정의할 수 있도록 "Deployment"라는 작업이 필요합니다.하나의 프로젝트 내에서 배포할 환경마다 각각의 Deployment를 생성해주시면, 실험을 진행할 때, 이 실험을 어떤 환경에만 배포할지 지정할 수 있습니다.Experiment > Deployments 화면에서 제공하는 “Create Deployment”를 클릭하고 배포할 환경의 이름과 프로젝트를 선택하면 바로 Deployment 생성이 가능합니다.3-2) Experiment 생성하기이제 기본적인 세팅은 모두 완료 되었으니 실험을 만들어 볼 수 있습니다!Experiment > Experiments 메뉴에서 새로운 실험명과 사용할 키 값을 정하신 후 생성(Create)합니다.4) 실험 설계4-1) 목표 설정하기실험을 만들 때 가장 먼저 생각해야 할 부분은 "목표" 설정 입니다. 실험을 한다는 것은 결국, 무언가를 더 좋게 만들기 위해서이기 때문에, 반드시 “이 실험을 통해 무엇이 좋아지기를 기대하는가?”에 대한 기준이 필요하며, 그것이 바로 목표 설정입니다. 우리가 설정한 목표를 달성했는지 여부를 가지고 이번 실험의 성공 여부를 파악해 보실 수 있겠지요.목표는 기존에 만들어 두었던 지표를 선택하실 수도 있고, 원하는 목표를 새롭게 생성하실 수도 있습니다.Unique, Event Total, Conversion 등 분석에서 활용해 보셨던 다양한 지표 옵션을 기반으로 목표 설정이 가능한데, 이번 실험에서는 클릭율이 5% 이상 증가하는 것을 목표로 잡았기 때문에, "화면 진입 > 버튼 클릭"으로의 전환율이 5% 이상 상승하는 것을 목표로 설정했습니다.4-2) 대안(Variant) 등록하기비교 테스트를 진행할 때, 대안은 하나일 수 있지만 여러 개가 있을 수도 있습니다. "내가 테스트하고 싶은 기능의 버전은 몇 가지이며, 각각 어떤 차이가 있을까?" 테스트 하고자 하는 대안의 수 만큼 Add a Variant 옵션으로 추가하여 정의할 수 있습니다. (단, 너무 많은 Variant는 분석을 어렵게 하므로 2~4개 이내를 권장합니다.)각 Variant의 Value 값은 SDK에서 분기 처리에 사용(e.g. variant.value)되므로 개발단에서 미리 지정하신 값이 있을 경우, 해당 값으로 기입되어야 하며, 미리 정의되어 있지 않았다면 여기에서 정의하시는 값으로 개발단의 코드 작업이 수행되어야 합니다.※Value 값이 수정될 경우, 앱의 재배포가 필요하므로 처음 생성 시 Amplitude에서 허용하는 명명규칙(숫자, 영문, 언더스코어, 하이픈만 허용)을 참고하시어 향후 변경하지 않을 값으로 지정이 필요합니다.4-3) 고객 그룹(Targeting) 정의하기[Audience]실험에 활용할 대안을 등록했다면, 누구를 대상으로 실험을 진행할 것인지 모수 집단을 선택하실 수 있습니다. All Users를 선택하여 전체 고객을 모수 집단으로 선정할 수 있으며, Target Users를 선택하여 특정 모수집단을 Segment로 정의할 수 있습니다.[Distribution]선정한 모수 집단을 각 대안에 어느 정도 비율로 할당 할것인지 지정할 수 있습니다. 기본 옵션인 evenly distribute로 동일한 비율로 지정하는 것을 권장 드리며, 원하실 경우 Customize 옵션으로 수동 설정이 가능합니다.(control로 할당되는 고객들은 실험에 참여는 하지만 실제로는 변경된 대안 UI가 노출되지 않는 그룹으로써, 대조군의 역할을 수행합니다.)[Rollout]지정하신 모수 집단 전체를 대상으로 실험을 수행하실 수도 있으나 그 중 일부를 대상으로만 진행하는 것도 가능합니다. Rollout 설정을 통해 전체 모수 집단 중 몇 %에 해당하는 고객들을 대상으로 실험을 진행할 것인지 범위를 지정할 수 있습니다.(Control vs. Rollout: control에 포함된 고객은 실험에 포함되어 향후 결과 분석 시 대조군 역할을 하지만, Rollout에서 제외된 고객은 실험 자체에 포함되지 않으므로 결과 또한 추적되지 않습니다.)5) 전달 구성5-1) Flag & Evaluation 정의Flag는 실험을 식별하는 고유 식별자로써, 실험을 생성하시는 시점에 key 항목으로 기입한 정보를 확인하실 수 있으며, 실험 시작 전까지는 변경이 가능합니다. 이 값은 SDK에서 실험 정보 요청에 사용(e.g.FLAG_KEY) 되므로 개발단에서 미리 정하신 값이 있다면 그 값으로, 없다면 여기에서 정의된 값으로 개발단의 코드 작업이 수행되어야 합니다.Evaluation Mode는 고객이 어떤 대안에 해당 되는지를 어디에서 계산할 것인지 선택하는 항목입니다. 일반적으로는 Amplitude에 수집된 정보를 실시간으로 확인하여 결정되나, 실시간 검토 방식은 통신 상의 약간의 딜레이(0.1~1초)가 발생하므로, 고객에게 즉각적으로 노출되어야 하는 UI에 대해서는 로컬에서 계산하는 방식을 선택하실 수도 있습니다.5-2) 배포 환경(Deployment) 선택지금까지 작성한 실험을 어떤 환경에 배포 할 것인지를 선택합니다. 특정 플랫폼이나 개발환경에만 적용하고자 하실 경우, 해당하는 deployment만 선택하여 배포가 가능합니다.6) 실험 시작모든 세팅을 완료했다면, 우측 상단 버튼을 이용하여 각 플랫폼 별로 적용할 수 있는 샘플 코드를 확인할 수 있습니다. 개발 담당자에게 해당 정보를 전달하여 적용을 요청할 수 있습니다.실험을 고객들에게 배포하기 전, 미리 등록해 둔 테스터만을 대상으로 선행적으로 배포가 가능하며, 예약 실행이나 feature flag만 활성화하고 실험 분석은 수행하지 않는 등 여러 옵션을 정의해 보실 수 있습니다.모든 사항의 확인이 완료되었다면, 최종적으로 Start Experiment를 클릭하여 실험 시작이 가능합니다. 실험을 종료할 때에는 초기 버전으로 롤백을 할 것인지, 아니면 특정 대안( Variant )으로 적용할 것인지 선정하여 실험을 마칠 수 있습니다.실험이 진행되는 동안 발생한 실험 참여(Assigentment), 실험 노출(Expouse) 및 목표로 잡은 정보들은 모두 고객별 프로필에 저장되므로 이를 기반으로 심층 분석(Analytics)을 바로 수행해 볼 수 있습니다. 또한, 처음 목표로 잡았던 것 이외에도 각 그룹별로 어떠한 변화가 있었는지 수집된 데이터를 기반으로 분석이 가능합니다.실험과 분석을 하나의 플랫폼 안에서실험과 데이터 분석은 이제 더 이상 따로 작업할 필요가 없습니다. 기존 A/B 테스트 도구들이 단순히 실험을 “실행”하는 데 집중했다면, Amplitude Feature Experiment는 실험 설계부터 분석, 최종 반영까지 추가적인 개발단 작업없이 한 번에 처리할 수 있는 실험 플랫폼 체계를 제공합니다.CUPED, Sequential Testing, Bonferroni 등 실험의 정확도를 높이는 기능이 기본으로 탑재되어 있어, 적은 트래픽으로도 빠르게 유의미한 결론을 얻을 수 있으며, Amplitude Analytics와 완벽히 연결되어 언제든 전환율,리텐션, 코호트 분석 등 심층적인 결과 분석을 바로 이어나갈 수 있습니다.또한 클라이언트 배포 없이, 서버-사이드 실험 연동을 지원하므로 고객들에게 끊김없는 실험 환경 제공이 가능합니다. 제품의 성과를 빠르게 검증하고, 그 결과를 정확히 해석해 다음 의사결정으로 이어가고 싶다면, Amplitude Feature Experiment는 더없이 강력한 선택이 될 것입니다.Feature Experiment 활용에 도움이 필요하나요?팀 맥소노미 Amplitude 도입문의 바로가기 콘텐츠 더 읽어보기A/B테스트 개념과 데이터 분석 방법🔍Amplitude 실험 전략 가이드북A/B테스트 마케팅 실전 가이드북

SEO를 넘어 GEO, AEO시대의 시작


SEO(Search Engine Optimization: 검색엔진 최적화)는 아주 중요한 디지털 마케팅 활동 중 하나였습니다. SEO란, 검색엔진 최적화라는 뜻으로 구글, 네이버와 같은 검색 엔진에서 우리의 브랜드가 잘 노출될 수 있도록 하는 활동을 의미합니다. 가령, 어떤 고객이 ‘마케팅 솔루션 추천’이라고 검색한다면, 이 검색어에서 최상단에 노출되는 브랜드 일수록 해당 고객과 연결될 가능성이 높겠죠. 게다가 해당 고객은 마케팅 솔루션에 관심이 있는 고객이라 보통의 다른 고객보다 훨씬 더 마케팅 솔루션을 구매할 가능성이 높습니다. 이를 ‘고의도’ 고객이라고 합니다.


이런 중요한 마케팅 활동이었던 SEO가 변하고 있습니다. AI의 등장으로 고객 여정이 급변하고 있기 때문인데요. 무언가를 알고 싶을 때, 사람들은 더 이상 구글 같은 검색 엔진에만 의존하지 않고, ChatGPT, Claude, Google AI Overview와 같은 AI 도구에 질문하기 시작했습니다. 이러한 변화는 매우 빠르게 일어나고 있으며, 일부 보고서에 따르면 웹 브라우징 세션 10개 중 6개에 AI 검색이 포함되어 있다고 합니다. 최근엔 이런 AI 검색 결과에 잘 노출될 수 있게 하는 활동을 AEO(AI Engine Optimization) 혹은 GEO(Generative Engine Optimization)라고 부르고 있습니다.


요즘의 AI도구는 출처 표기를 기본적으로 제공하고 있지만, 검색 엔진에 비해 훨씬 높은 수준으로 개인화되어있고, 입력하는 질문(프롬프트)에 따라 응답이 크게 변합니다. 때문에 자신의 브랜드가 AI 검색 전반에 걸쳐 어떻게 노출되고 있는지, 혹은 왜 경쟁사들이 계속 우위를 점하는지 파악하는 것은 쉽지 않습니다. 게다가 AI 기반 검색 시스템은 전통적인 검색 엔진보다 연결하는 사이트가 적은 경향이 있어, AI 응답에 등장하지 않는 브랜드는 고의도 고객과의 접점을 놓칠 위험이 있습니다.







Amplitude AI Visibility



이러한 새로운 검색 환경에 대응하고 브랜드 가시성을 확보할 수 있도록, Amplitude가 AI Visibility를 출시했습니다! AI Visibility는 AI 검색 환경에 우리 브랜드가 얼마나 어떻게 노출되고 있는지 정확히 이해할수 있도록 도와줍니다. Amplitude 플랫폼에 직접 구축되어 있어, AI 검색 성과를 실제 비즈니스 결과 및 수익과 연결할 수 있습니다.


가장 주목할 만한 점은, Amplitude AI Visibility는 무료로 제공된다는 것입니다. 다른 AEO 도구가 비용이 많이 들거나, 기존 SEO 제품에서 추가적인 옵션으로 제공되는 것과 차별화됩니다. Amplitude 고객은 모든 플랜에서 이 기능을 사용할 수 있으며, 비고객에게도 제한된 무료 경험을 제공합니다.


AEO 무료 분석하러 가기









AI Visibility 자세히 알아보기


1. 검색 결과 페이지가 없는 세상을 위한 새로운 SEO



앞서 설명했지만, Amplitude AI Visibility의 핵심은 'AI 채팅을 위한 SEO'입니다. 기존 SEO가 구글 검색 결과 페이지(SERP) 순위 경쟁이었다면, 이제는 AI의 답변에 우리 브랜드를 더 자주, 더 긍정적으로 등장시키는 것이 새로운 목표가 되었습니다. 이는 단순히 트렌드를 따르는 것이 아닌, 생존을 위한 필수 역량입니다.


점점 더 많은 고객이 구체적인 질문을 AI에게 직접 던지고 있습니다. 이때 AI의 답변에 우리 브랜드가 포함되지 않는다면, 사실상 시장에 존재하지 않는 것과 마찬가지입니다. AI 검색은 더 이상 먼 미래가 아니며, 이 새로운 전장에서 보이지 않는 브랜드는 고객을 경쟁사에 빼앗길 수밖에 없습니다.


"AI 검색은 더 이상 미래가 아니라 브랜드 노출의 새로운 최전선입니다. 이제 브랜드가 AI 응답에 등장하지 않는다면 존재하지 않는 것과 마찬가지입니다."



2. 경쟁사 현황 시각화



'경쟁사가 우리보다 AI에서 더 잘하고 있을까?'라는 막연한 생각은 이제 끝내세요. AI Visibility는 LLM에서 자사 브랜드가 경쟁사와 어떻게 비교되는지 명확한 데이터를 제공합니다. 특히 주제별 경쟁력을 한눈에 비교할 수 있는 시각적 매트릭스(visual matrix)를 통해 어떤 영역에서 경쟁사가 우위를 점하고 있는지 직관적으로 보여줍니다.


예를 들어, LLM에게 "사용자 온보딩 구축 방법을 알려줘. 상호작용 요소가 많이 들어가면 좋겠어"라고 물었을 때, 경쟁사인 Pendo는 1위로 등장하는 반면 Amplitude는 마지막 순위에 그쳤습니다. 이는 Pendo가 해당 기능으로 더 강하게 인식되고 있음을 보여주는 데이터입니다. 그렇다면, 경쟁사와의 격차를 줄이기 위해 어떤 콘텐츠에 집중해야 할지 명확하게 전략을 설정할 수 있는 것이죠. 이처럼 구체적인 데이터는 막연한 불안감을 실행 가능한 인사이트로 전환합니다. 



3. AI 언급부터 실제 '매출'까지 모든 과정을 연결


AI Visibility의 가장 강력한 차별점은 독립적인 도구가 아니라 Amplitude 분석 플랫폼에 완벽하게 통합되어 있다는 것입니다. 이는 AI에서의 브랜드 노출도를 실제 비즈니스 성과와 직접 연결할 수 있다는 것을 의미하죠. 다른 AEO 도구가 단순히 노출 횟수만 보여주는 반면, AI Visibility는 한 걸음 더 나아갑니다.


AI Visibility와 Session Replay를 결합하면, AI 채팅에서 유입된 사용자의 실제 세션을 영상처럼 재생해볼 수 있으며, AI Visibility와 Activation 기능을 결합하면, AI 유입 코호트를 만들어 리타겟팅 캠페인을 진행할 수 있습니다. 즉, "AI 노출도를 높이는 노력이 실제 매출 증대로 이어졌는가?"라는 핵심 질문에 명확한 데이터로 답하고 마케팅 활동의 ROI를 투명하게 증명할 수 있게 되는 것입니다.







AI Visibility 활용하기


AI Visibility는 브랜드가 AI 환경에서 성공적인 고객 확보 플랫폼을 구축할 수 있도록 돕는 세 가지 핵심 단계를 제공합니다.


Step 1: AI의 브랜드 언급 파악하기(Analyze)

AI Visibility는 브랜드를 언급하는 프롬프트의 백분율로 표시되는 AI 가시성 점수를 정량화합니다. 가령, '제품 분석 도구 추천'과 같은 프롬프트를 입력하면 Amplitude는 75%의 확률로 언급되었습니다.


  1. 가시성 점수 및 경쟁사 비교 확인: 수백 개의 프롬프트에서 AI 가시성 점수를 정량화하고, 주요 경쟁사 대비 브랜드 노출 순위와 점유율을 헤드투헤드(head-to-head) 방식으로 비교합니다. 경쟁사 대비 약점을 식별할 수 있습니다.
  2. 프롬프트 및 소스 분석: AI가 우리 브랜드를 추천하는지, 혹은 비추천하는지 감정을 모니터링하고(출시 예정 기능), LLM이 응답을 생성할 때 인용한 외부 웹사이트 소스를 검토합니다. 이 기능을 활용하면 경쟁사를 언급하지만 우리 브랜드는 언급하지 않는 페이지를 식별하여, 명확한 콘텐츠 전략을 수립할 수 있습니다.
  3. 약점 영역 식별: 최근에 출시되어, LLM이 아직 인지하지 못한 주제, 기능들을 식별하여 마케팅 콘텐츠를 보강할 필요성을 알 수 있습니다.



Step 2: 필요한 조치 파악하기(Action)

점수를 아는 것만으로는 충분하지 않습니다. AI Visibility는 인사이트를 행동으로 전환하는 기능을 제공합니다 (일부 기능은 출시 예정)


  1. 맞춤형 개선 권고 받기: AI 응답에서 경쟁사가 우위를 점하는 주제를 파악하고, 격차를 줄이기 위한 맞춤형 권장 사항을 제공받습니다.
  2. 콘텐츠 시뮬레이션 및 생성: 웹사이트에 변경 사항을 적용하기 전에 시뮬레이션 기능을 통해 변경 사항을 테스트하고 LLM이 어떻게 반응하는지 몇 분 안에 확인할 수 있습니다. 또한, 트래픽 데이터를 참조하여 고품질 콘텐츠를 생성하는 기능도 제공합니다.


Step 3: 비즈니스 성과와 연결(Accelerate)

AI Visibility는 단순한 검색 분석 도구가 아닙니다. Amplitude 플랫폼의 일부로서, AI 검색 성과를 실제 고객 행동 데이터와 연결합니다.


  1. 트래픽 및 전환 추적: AI를 통해 유입된 실제 사용자 트래픽 데이터를 추적하고, 이러한 AI 유입 방문자가 퍼널, 여정, 코호트 내에서 어떻게 행동하는지 측정합니다.
  2. ROI 입증: AI 검색에서 노출 개선이 트래픽 증가와 전환 경로 분석으로 이어지는지 확인하여, 명확한 수익 지표로 객관적 ROI를 입증할 수 있습니다.
  3. 플랫폼 연동 활용: 분석, 세션 리플레이, 실험, 활성화와 같은 다른 도구와 연결하여, AI 검색에서 유입된 사용자 세션을 확인하거나, AI 유입 코호트를 구축하여 타겟 캠페인을 실행할 수 있습니다.








지금 바로 시작하기


AI 검색은 더 이상 미래의 트렌드가 아닙니다. 이미 새로운 메인 채널이 되었습니다. 빠르게 움직일 수록 초기에 우위를 점할 수 있습니다.

지금 바로 무료로 AI Visibility를 사용해보고, AI 응답에서 경쟁사를 앞질러 보세요.






콘텐츠 더 읽어보기

앰플리튜드, 데이터 시각화, 인공지능(AI), 마케팅 트렌드, 데이터 분석, 고객획득