앰플리튜드

마케팅 퍼널(Funnel) 의미와 분석 방법🔍

Team MAXONOMY 2024.09.03

마케팅 퍼널(Funnel) 의미와 분석 방법🔍

퍼널 분석(Funnel Analysis)이란?


퍼널 분석(Funnel Analysis)이란, 전환 지점에 이르기까지의 일련의 이벤트를 분석하는 방법을 말합니다. 제품, 웹사이트, 이메일 등 모든 종류의 디지털 접점에서 퍼널 분석을 할 수 있습니다. 퍼널 분석의 목적은 고객여정에서 중요한 이벤트를 정확히 파악하여, 테스트를 수행하고 사용자 경험을 개선하며 전환율을 높이는 것입니다.


예를 들어, 이메일을 통해 무료 체험 이벤트를 홍보하고 무료 체험 사용자들이 최종적으로 유로 전환을 하길 원하는 캠페인이라면, 그 퍼널을 다음과 같이 구성될 것입니다.


  • 1단계: 잠재 고객이 이메일을 열고 무료 체험 제안을 발견
  • 2단계: 무료 체험을 신청하기 위해 CTA 버튼을 클릭
  • 3단계: 계정을 만들고 제품을 무료로 사용
  • 4단계: 무료 체험 기간이 종료된 후 잠재 고객이 유료 고객으로 전환







퍼널 분석이 필요한 이유


퍼널 분석은 왜 필요할까요? 광고에 혹해서 링크를 클릭하였는데 회원가입 절차가 복잡해서 사용을 종료한 경험, 괜찮아 보이는 앱을 설치했는데 구성이 복잡해서 금방 삭제한 경험, 한 번씩은 있을 것입니다. 고객이나 사용자가 디지털 경로를 따라가면서 원하는 결과에 도달하지 못하는 것은 굉장히 흔한 일입니다.


이를 해결하기 위해 아무리 고객의 경험을 이해하려 해보아도 분명히 한계가 있습니다. 이때 퍼널 분석을 통해 각 단계를 통계적으로 들여다봄으로써 이러한 사용자의 마찰 지점을 효과적으로 개선할 수 있는 것입니다. 퍼널의 각 단계 사이에는 여러 가지 방해 요소나 장애물이 발생할 수 있으며, 무엇이 효과가 있고 무엇이 그렇지 않은지를 알려줄 수 있는 행동 패턴이 존재할 가능성이 큽니다.


앞서 살펴본 예시에서 유독 3단계에서 이탈이 많다면, 그 원인이 무엇인지 행동 패턴에서 찾아볼 수 있을 것입니다. 가령 모바일 환경에서 회원가입 로딩 속도가 유독 느려 사용자가 회원가입을 쉽게 포기하기 때문일 수 있죠. 이런 경우 PC 사용자의 퍼널과 모바일 사용자의 퍼널을 비교하여 사실 여부를 쉽게 확인할 수 있을 것입니다. 이 문제를 개선하여 모바일 전환율이 PC 전환율만큼 높아진다면, 얼마나 많은 수익을 기대할 수 있을지 예상하고, 모바일 환경을 개선하는 투자 비용 대비 효과를 비교할 수 있을 것입니다. 즉, 우리가 늘 강조하는 데이터 기반의 의사결정을 수행하고 전환율을 개선할 수 있는 것입니다.


정리하자면, 퍼널 분석은 다음과 같은 목적으로 사용할 수 있습니다:


  • 전환율 개선: 퍼널 분석을 통해 사용자가 최종 목적지에 도달하지 못하게 하는 요인을 파악하여, 해결책을 수립하고 전환율을 개선할 수 있습니다. 여기서 최종 목적지는 "가입" 버튼을 클릭하거나 PDF 다운로드 등 상황에 맞춰 다양하게 설정할 수 있습니다.
  • 퍼널 간소화: 웹사이트, 모바일 앱, 이메일, 대시보드 등 다양한 디지털 접점에서 퍼널을 만들 수 있을 것이고 이를 합치면 전체적인 고객 여정이 됩니다. 퍼널 분석은 이러한 각 여정이 서로 어떻게 연결되는지를 전체적인 관점에서 살펴보고 필요없거나 중복되는 부분을 찾아 간소화 할 수 있습니다.
  • 유입과 리텐션의 통합 : 보통 마케팅 팀은 신규 고객을 유입하는 데 집중하는 반면, 제품 팀은 그 고객을 유지하는 데 중점을 둡니다. 퍼널 분석은 두 팀이 데이터를 공유하고 인사이트를 교류할 수 있는 기회를 제공합니다.








퍼널 분석 4가지 방법


퍼널 데이터를 해석하고 활용하는 방식을 비즈니스와 산업에 따라 달라지지만, 대표적으로 다음 4가지의 방법이 있습니다.



전환 분석

퍼널을 분석하는 가장 기본적인 방법입니다. 각 단계에서 전환한 사용자의 수를 측정합니다. 주로 막대 그래프로 시각화하여 표현하죠. 전환 분석 방식의 핵심은 문제가 발생하였을 때 이를 빠르게 확인하고 조치를 취하는 것입니다. 퍼널의 한 단계에서 사용자 이탈이 갑자기 심해진다면, 그 부분을 빠르게 점검해야 합니다.







기간에 따른 전환 분석

기간에 따른 전환 분석은 특정 날짜에 퍼널에 진입한 사용자의 전환율을 확인하는 분석법입니다. 사용자가 퍼널을 완료하지 않아도 분석 대상에 계속 포함하는 것이지요. 휴일이나 특별 이벤트 동안 퍼널이 어떻게 자동하는지 이해하는 데 유용합니다.







전환 시간 분석

각 사용자가 각 단계를 클릭하는 데 얼마나 시간이 걸리는지는 파악하여, 퍼널이 건강하게 작동하고 있는지 확인할 수 있습니다. 적절한 전환 시간은 비즈니스에 따라 다르기 때문에, 적절한 기준을 세우고 과거 데이터를 비교하여 설정할 필요가 있습니다. 가령, 패스트푸드 배달 앱과 세금 관련 서비스 앱의 기대되는 전환 시간은 완전히 다를 것입니다.










빈도 분석

사용자가 퍼널의 다음 단계로 이동하기 전에 특정 행동을 몇 번이나 수행하는지 측정하는 분석 방법입니다. 빈도를 측정함으로써 사용자가 해당 퍼널 내에서 무엇을 얼마나 자주 하는지 파악할 수 있습니다. 가령, 장바구니 물건을 결제하기 전에 이 물건이 최저가가 맞는지 확인하기 위해 검색창에 들어가는 행동을 많이 보인다면, 장바구니 안에서 해당 물품이 최저가임을 나타내주는 메시지를 표시하여, 사용자가 더 간편하게 쇼핑 여정을 마칠 수 있도록 유도할 수 있을 것입니다.






이 외에도 비즈니스나 상황에 최적화된 독특한 관점으로 접근하여 퍼널 분석을 진행할 수 있습니다. 위의 기본적인 퍼널 분석 방법에 익숙해진다면, 더 창의적인 방법으로 문제를 해결해보세요.







퍼널 분석 도구


퍼널 분석을 위해선 관련된 도구가 필수로 필요합니다. 대표적인 퍼널 분석 도구인 Amplitude는 단순 페이지 뷰나 세션뿐만 아니라 모든 종류의 이벤트나 사용자 행동을 측정하고 추적할 수 있습니다. 퍼널 이벤트의 순서를 지정하고 행동 코호트를 세분화하며, 특정 전환 기간을 설정할 수도 있죠.

다음은 퍼널 분석 도구를 선택할 때, 필수로 체크해야하는 요소입니다


  • 고객 여정 전반에 걸쳐 사용자 행동을 시각화하고, 측정하며, 이해할 수 있어야 합니다. 이때 사용자를 코호트로 분류하여 확인할 수 있는 것이 좋습니다.
  • 퍼널 상에서 문제점이 발생했을 때, 이를 빠르게 감지하고 알림을 보낼 수 있어야 합니다.
  • 제품 개선, 개인화, 원활한 고객 여정 구축를 위한 추가적인 데이터 연계가 가능해야 합니다.









콘텐츠 더 읽어보기

logo

팀맥소노미

YOUR DIGITAL MARKETING HERO

비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요

관련 글 보기

퍼널(Funnel) 분석과 사용 사례

퍼널(Funnel) 분석과 사용 사례

고객의 동향 이해하기

Amplitude 2025년 3월 신규 기능 업데이트 훑어보기

Amplitude 2025년 3월 신규 기능 업데이트 훑어보기

Amplitude의 새로운 3월 업데이트 기능 살펴보기

사례와 함께 보는 리텐션율(Retention Rate)

사례와 함께 보는 리텐션율(Retention Rate)

리텐션 지표의 실제 사례

리텐션(Retention) 의미와 측정 방법🔍

리텐션(Retention) 의미와 측정 방법🔍

리텐션이란?리텐션(User Retention)이란, 특정 기간 동안 활성화된 유저 혹은 고객의 수를 나타냅니다. 보통은 '리턴션율'이라는 백분율을 통해서 표현합니다. 리텐션율을 구하는 공식은 다음과 같습니다.(설정된 기간 끝의 활성 사용자 수 - 설정된 기간 동안의 신규 사용자 수) / 기간 시작 시의 총 활성 사용자 수이런 유저 리텐션을 개선하기 위해선 코호트 분석, 고객 피드백 수집 및 활용, 온보딩 경험 개선, 푸시 알림 등의 방법을 주로 활용합니다.유저 리텐션 vs 고객 리텐션중요한 점은 유저 리텐션과 고객 리텐션을 구분해야한다는 것입니다. 여기서 유저와 고객을 명확하게 구분을 할 필요가 있는데요. 유저는 제품이나 서비스를 이용하는 사람을 말하고 고객은 제품이나 서비스에 가격을 지불하는 사람을 말합니다. 즉, 유저 리텐션은 제품을 사용하는 사람 수를 의미하는 반면, 고객 리텐션은 제품을 계속 결제하는 고객 수를 측정합니다. 유저 리텐션이 유저의 활동에 대한 측정 지표라면, 고객 리텐션은 재무적인 목적이 강한 지표라고 할 수 있죠.예를 들어, 쿠팡이나 아마존과 같이 많은 상품이 거래되는 이커머스 플랫폼의 경우, 유저 리텐션은 특정 기간 동안 앱이나 웹 페이지에 방문하는 유저 수로 측정할 수 있고, 고객 리텐션은 특정 기간 동안 실제 결제를 하는 숫자로 측정합니다. 가장 대표적인 유형인데요.성격이 조금 다른 케이스도 있습니다. 또 다른 예를 들면, 대기업에 인사 솔루션을 제공하는 회사A는 고객 리텐션을 특정 기간 동안 구독을 계속하는 기업(고객)의 수로 측정할 것입니다. 유저 리텐션은 고객 회사에서 몇 명의 유저가 특정 동안 제품에 로그인하는지를 측정합니다. 즉 이미 구독 중인 고객이 우리 제품을 얼마나 잘 사용하고 있는지 확인하는 것이죠. 유저 리텐션 vs 이탈률유저 리텐션과 이탈률은 큰 상관관계가 있습니다. 이탈률은 비즈니스가 잃는 유저 수 혹은 다시 구독하지 않는 고객 수를 의미합니다. 따라서 이탈률은 유저 리텐션율의 역수이며, 둘이 합쳐서 100%가 되어야합니다.유저 리텐션 측정 방법유저 리텐션은 회사의 전반적인 상태를 이해하는 데 큰 도움이 됩니다. 높은 유저 리텐션은 수익성과 안정성이 높음을 나타내죠. 유저 리텐션을 측정하기 위해선 우선 명확한 활성 유저 기준과 기간 기준을 정의하고 리텐션 유형을 결정해야 합니다.유저 리텐션율 공식유저 리텐션율을 계산하는 공식은 앞에서 설명했듯 다음과 같습니다공식을 사용하여 유저 리텐션율을 구하는 방식은 쉽고 직관적이긴 하지만, 더 정확한 측정을 위해선 제품 분석 솔루션을 사용하는 것이 좋습니다. 대표적으로 Amplitude가 있죠.가장 이상적인 유저 리텐션율은 100%이고 이탈율은 0%일 것입니다. 하지만 당연히도 이는 불가능하고, 실제론 산업별 적합한 리텐션율을 목표해야 합니다. CustomerGauge의 'B2B NPS & CX Benchmarks Report 2022'에 따르면, 에너지 및 유틸리티 산업의 유저 리텐션율이 89%로 가장 높았으며 도매 산업의 리텐션율이 44%로 가장 낮았습니다.현재 속해있는 산업의 표준 리텐션율을 찾아보고 우리 회사의 유저 리텐션율을 비교한 다음, 적절한 목표를 잡는 것이 중요합니다.활성 유저 기준과 활성 기간 기준 정하기위의 공식을 사용하려면 먼저 두 가지 요소를 명확히 정의해야 하는데요. 바로 누구를 활성 유저로 볼지와 기간을 어떻게 설정할지입니다.먼저 활성 유저를 정의하는 기준은 여러가지가 있습니다. 그중 우리 제품과 사업 목적에 가장 적합한 방법을 선택해야하는데요. 단순히 애플리케이션을 설치한 유저를 활성 유저로 볼 수도 있고, 매일 사용하는 유저를 활성 유저로 간주할 수도 있습니다. 가장 적합한 방식을 선택하되, 결정한 기준에 대해서 회사 내부적인 통일이 되어야 정확한 지표 측정이 가능합니다.기간을 설정하는 방식도 기업마다 상이한데요. 보통은 지표를 측정하는 목적에 따라 기간을 설정합니다. 예를 들어, 분기 보고서를 작성하는 경우, 한 분기를 기준으로 리텐션율을 측정하는 것이 좋겠죠. 이 외에도 산업이나 제품 특성에 따라서 기간을 정할 수도 있습니다. 예를 들어, 항공 예약 앱의 경우 매일 앱을 사용하는 경우는 거의 없겠죠. 반면 캘린더 앱의 경우에는 성공적인 매일 사용하는지가 성공을 판가름하는 기준이 될 것입니다.N-Day 리텐션 (유저 리텐션 반환률)유저 리텐션 반환률(Return On retention) 혹은 N-Day 리텐션이라 불리는 지표는 특정 날짜에 제품을 사용하는 사용자 수를 말합니다. 이 때 "Day 0"은 사용자가 앱을 다운로드하고 설치하거나 프로필을 만드는 등의 특정 작업을 수행한 첫 번째 날을 가리킵니다. 그리고 Day 0 이후에 사용자가 어떻게 행동하는지 분석합니다. Day 1, Day 3, Day 5 등 유저 언제 다시 돌아오는지 추적할 수 있습니다.리텐션 개선 방법유저 리텐션을 향상시키기 위해선 유저 경험을 먼저 향상시켜야합니다. 유저 리텐션과 유저 경험은 서로 뗄 수 없는 관계이죠. 유저가 제품을 즐기고 가치를 느끼면 당연히 더 오래 서비스에 머물 것입니다! 고객 경험을 개선하기 위해선 코호트 분석, 피드백 루프, 고객 온보딩, 꾸준한 업데이트 등과 같은 방법이 있습니다.1. 코호트 분석하기코호트 분석이란, 유저의 행동과 시간 흐름에 따라 그룹화하는 데이터 기반의 분석 방법입니다. 구체적으로는 유저 획득일, 플랫폼, 채널, 사용자 행동과 같은 요소를 기반으로 그룹을 나눕니다. 코호트 분석을 사용하여 다양한 고객 세그먼트 간 관찰된 사용자 동향과 행동에 가설을 세울 수 있습니다. 특정 코호트의 중요한 지점을 식별하게 되면 해당 코호트의 이탈을 줄이기 위한 전략을 개발할 수 있는 것이죠. Amplitude와 같은 분석 플랫폼을 사용하면 코호트 분석을 수행하고 사용자를 보다 깊게 이해할 수 있습니다. 코호트 분석에 대한 더 자세한 정보를 확인하고 싶다면 행동 코호트 분석 가이드북을 확인해보세요!2. 유저 피드백 수집하기제품을 개선하려면 유저가 제품에 대해 어떤 생각을 하는지 알아야겠죠. 정기적으로 설문 조사를 보내 사용자의 의견을 수집할 수 있습니다. 예를 들어, 앱 사용 5회마다 앱을 평가하도록 요청하거나, 리뷰를 남기면 인센티브를 제공할 수 있습니다. 구독을 취소할 때 그 이유를 묻는 것도 좋은 방법이죠! 수집된 피드백을 정리하고, 해당 피드백을 처리할 수 있는 최적의 부서에 알리세요. 이 과정을 반복하면 유저 경험이 꾸준히 상승할 것입니다.3. 온보딩 경험 개선무엇이든 첫 인상이 가장 중요하고 그 첫 인상을 남길 기회는 단 한 번뿐입니다. 그래서 온보딩 경험이 매우 중요한 것인데요. Wyzowl의 보고서에 따르면, 10명 중 8명은 어떻게 사용해야 할 지 모르는 앱을 삭제한 경험이 있다고 합니다. 이런 케이스를 방지하기 위해선 앱 내 데모, 튜토리얼, 대화형 안내 등의 기능을 고려할 수 있습니다.콘텐츠 더 읽어보기고객 리텐션 마스터 가이드북모바일 게임 리텐션(Retention) 바로알기이탈률(Bounce Rate), 낮을수록 좋을까?🤔

퍼널 분석(Funnel Analysis)이란?


퍼널 분석(Funnel Analysis)이란, 전환 지점에 이르기까지의 일련의 이벤트를 분석하는 방법을 말합니다. 제품, 웹사이트, 이메일 등 모든 종류의 디지털 접점에서 퍼널 분석을 할 수 있습니다. 퍼널 분석의 목적은 고객여정에서 중요한 이벤트를 정확히 파악하여, 테스트를 수행하고 사용자 경험을 개선하며 전환율을 높이는 것입니다.


예를 들어, 이메일을 통해 무료 체험 이벤트를 홍보하고 무료 체험 사용자들이 최종적으로 유로 전환을 하길 원하는 캠페인이라면, 그 퍼널을 다음과 같이 구성될 것입니다.








퍼널 분석이 필요한 이유


퍼널 분석은 왜 필요할까요? 광고에 혹해서 링크를 클릭하였는데 회원가입 절차가 복잡해서 사용을 종료한 경험, 괜찮아 보이는 앱을 설치했는데 구성이 복잡해서 금방 삭제한 경험, 한 번씩은 있을 것입니다. 고객이나 사용자가 디지털 경로를 따라가면서 원하는 결과에 도달하지 못하는 것은 굉장히 흔한 일입니다.


이를 해결하기 위해 아무리 고객의 경험을 이해하려 해보아도 분명히 한계가 있습니다. 이때 퍼널 분석을 통해 각 단계를 통계적으로 들여다봄으로써 이러한 사용자의 마찰 지점을 효과적으로 개선할 수 있는 것입니다. 퍼널의 각 단계 사이에는 여러 가지 방해 요소나 장애물이 발생할 수 있으며, 무엇이 효과가 있고 무엇이 그렇지 않은지를 알려줄 수 있는 행동 패턴이 존재할 가능성이 큽니다.


앞서 살펴본 예시에서 유독 3단계에서 이탈이 많다면, 그 원인이 무엇인지 행동 패턴에서 찾아볼 수 있을 것입니다. 가령 모바일 환경에서 회원가입 로딩 속도가 유독 느려 사용자가 회원가입을 쉽게 포기하기 때문일 수 있죠. 이런 경우 PC 사용자의 퍼널과 모바일 사용자의 퍼널을 비교하여 사실 여부를 쉽게 확인할 수 있을 것입니다. 이 문제를 개선하여 모바일 전환율이 PC 전환율만큼 높아진다면, 얼마나 많은 수익을 기대할 수 있을지 예상하고, 모바일 환경을 개선하는 투자 비용 대비 효과를 비교할 수 있을 것입니다. 즉, 우리가 늘 강조하는 데이터 기반의 의사결정을 수행하고 전환율을 개선할 수 있는 것입니다.


정리하자면, 퍼널 분석은 다음과 같은 목적으로 사용할 수 있습니다:









퍼널 분석 4가지 방법


퍼널 데이터를 해석하고 활용하는 방식을 비즈니스와 산업에 따라 달라지지만, 대표적으로 다음 4가지의 방법이 있습니다.



전환 분석

퍼널을 분석하는 가장 기본적인 방법입니다. 각 단계에서 전환한 사용자의 수를 측정합니다. 주로 막대 그래프로 시각화하여 표현하죠. 전환 분석 방식의 핵심은 문제가 발생하였을 때 이를 빠르게 확인하고 조치를 취하는 것입니다. 퍼널의 한 단계에서 사용자 이탈이 갑자기 심해진다면, 그 부분을 빠르게 점검해야 합니다.







기간에 따른 전환 분석

기간에 따른 전환 분석은 특정 날짜에 퍼널에 진입한 사용자의 전환율을 확인하는 분석법입니다. 사용자가 퍼널을 완료하지 않아도 분석 대상에 계속 포함하는 것이지요. 휴일이나 특별 이벤트 동안 퍼널이 어떻게 자동하는지 이해하는 데 유용합니다. 







전환 시간 분석

각 사용자가 각 단계를 클릭하는 데 얼마나 시간이 걸리는지는 파악하여, 퍼널이 건강하게 작동하고 있는지 확인할 수 있습니다. 적절한 전환 시간은 비즈니스에 따라 다르기 때문에, 적절한 기준을 세우고 과거 데이터를 비교하여 설정할 필요가 있습니다. 가령, 패스트푸드 배달 앱과 세금 관련 서비스 앱의 기대되는 전환 시간은 완전히 다를 것입니다. 










빈도 분석

사용자가 퍼널의 다음 단계로 이동하기 전에 특정 행동을 몇 번이나 수행하는지 측정하는 분석 방법입니다. 빈도를 측정함으로써 사용자가 해당 퍼널 내에서 무엇을 얼마나 자주 하는지 파악할 수 있습니다. 가령, 장바구니 물건을 결제하기 전에 이 물건이 최저가가 맞는지 확인하기 위해 검색창에 들어가는 행동을 많이 보인다면, 장바구니 안에서 해당 물품이 최저가임을 나타내주는 메시지를 표시하여, 사용자가 더 간편하게 쇼핑 여정을 마칠 수 있도록 유도할 수 있을 것입니다.






이 외에도 비즈니스나 상황에 최적화된 독특한 관점으로 접근하여 퍼널 분석을 진행할 수 있습니다. 위의 기본적인 퍼널 분석 방법에 익숙해진다면, 더 창의적인 방법으로 문제를 해결해보세요.







퍼널 분석 도구


퍼널 분석을 위해선 관련된 도구가 필수로 필요합니다. 대표적인 퍼널 분석 도구인 Amplitude는 단순 페이지 뷰나 세션뿐만 아니라 모든 종류의 이벤트나 사용자 행동을 측정하고 추적할 수 있습니다. 퍼널 이벤트의 순서를 지정하고 행동 코호트를 세분화하며, 특정 전환 기간을 설정할 수도 있죠.

다음은 퍼널 분석 도구를 선택할 때, 필수로 체크해야하는 요소입니다










콘텐츠 더 읽어보기

앰플리튜드, 퍼널