앰플리튜드
[FAQ] GA에서 Amplitude로 전환하기
Team MAXONOMY ・ 2023.10.23
![[FAQ] GA에서 Amplitude로 전환하기 [FAQ] GA에서 Amplitude로 전환하기](https://maxonomy-prd-pub-a-s3.s3.ap-northeast-2.amazonaws.com/upload/BoardThumbnail/38764/wCjU9pfC.webp)
구글의 유니버설 애널리틱스(Universal Analytics) 지원이 중단되면서, 많은 기업에서 Amplitude에 대한 문의를 주셨는데요, 이번 포스팅에서는 유니버설 애널리틱스(이하 UA) 지원 종료와 관련하여 Amplitdue에 대해 가장 많이 궁금해하셨던 질문과 그에 대한 답변을 알아보겠습니다!
Q1. UA에서 Amplitude로 이전하기, 많이 어려운가요? 😔
UA을 사용하던 많은 고객들이 패닉에 빠졌습니다. UA 서비스 종료가 너무 예상치 못한 일이었고, UA에서 GA4로 넘어가는 프로세스도 그렇게 간단하지 않았거든요.
웹 사이트 분석을 주로 진행하신 경우에는 GTM(Google Tag Manager : 구글 태그 매니저)을 기반으로 Amplitude로 넘어오는 방법을 추천합니다. UA를 사용했다면, GTM을 통해 데이터 레이어를 공급했을텐데요. Amplitude의 무료 GTM 템플릿을 활용한다면, 기존에 UA에서 작업한 모든 데이터를 손쉽게 이관하여 Amplitude 안에서 확인할 수 있습니다. 이후엔 Amplitude에서 이벤트와 속성(property)을 설정하고, 새로운 규칙을 GTM에 추가하기만 하면 됩니다! 뭔가 복잡해보이지만, 실제론 몇 시간만에 끝낼 수 있는 간단한 작업입니다.
툴을 활용한 방법도 있는데요. API를 기반으로 UA의 분류체계(Taxonomy)를 Amplitude로 손쉽게 옮기는 툴이 존재합니다.(Amplitude의 제휴사인 BlastX와 함께 만들었습니다) Amplitude의 국내 공식 리셀러인 Team MAXONOMY에서도 이와 관련된 상담과 기술지원을 아끼지 않고 있습니다.😉
모바일 앱 분석을 주로 진행하셨던 고객은 GA SDK나 Firebase SDK를 Amplitude SDK로 교체해야합니다. 아무래도 웹 사이트보다는 복잡한데요. 이런 경우에는 Amplitude 사용법을 먼저 익힐 수 있도록, 앱과 연결된 웹 사이트 분석부터 시작하는 것을 추천드립니다. Amplitude는 하나의 프로젝트 안에서 웹/앱 데이터를 결합하여 분석할 수 있기 때문에 크게 걱정하실 필요 없습니다.
Amplitude는 UA보다 훨씬 높은 호환성을 자랑합니다. Segment, mParticle, RudderStack 등의 CDP에서 얻은 데이터부터, 자체 개발한 데이터 수집기의 데이터까지 Amplitude에서 활용 가능합니다. 뿐만 아니라 BiqQuery나 Snowflake와 같은 데이터 웨어하우스와도 통합 가능합니다.
Q2. 이커머스 분석도 가능한가요? 📋
UA는 'Enhanced Ecommerce(향상된 전자상거래)'라는 기능을 제공하는데요. 이 기능을 유용하게 사용한 고객이 많을 것 같습니다. Enhanced Ecommerce를 사용하면 이커머스 방문자가 얼마나 자주 제품을 검색하고, 장바구니에 담고, 구매하는지를 알 수 있죠.👓 또한 이커머스에서 판매되고 있는 각 제품을 트래킹할 수 있도록, 제품마다 자체적인 데이터셋을 제공합니다.
당연히 Amplitude로도 이 모든 기능을 사용할 수 있습니다! 다만, 구현 방법을 정확히 규정하지 않는다는 점, 특정 레포트(혹은 매트릭스)를 자동으로 형성하지 않는다는 점이 다릅니다. UA처럼 따로 세팅하지 않아도 레포트가 미리 형성되는 기능은 매력적이긴 하지만 이는 UA가 규정한 데이터 분석 인사이트만 발견하게 될 위험이 있습니다. 그럼에도 UA에서 받아보던 레포트가 편하다면, 베스트 프랙티스(Best Practice) 기능을 통해 UA에서 사용하던 이벤트를 그대로 복사하고, 맞춤 수정까지 하여 레포트를 받으실 수 있습니다.
또한, UA에는 하나의 측정기준 배열만 가능한 반면에, Amplitude에서는 무제한의 측정기준 배열이 가능합니다. 언제든지 하위 측정기준(속성)을 트래킹할 수 있다는 거죠!
Q3. 마케팅 채널과 캠페인을 트래킹할 수 있나요?🙋♂️
UA를 사용의 주 목적은 아무래도 퍼포먼스 마케팅일 것입니다. '마케팅 유입 분석'은 UA의 핵심이라고 할 수 있죠. 마케터들이 보통 사용하는 UA의 주요 기능은 다음과 같습니다.
- 유입 채널(Acquisition Channels): 고객 유입 채널을 추적하고, 적합한 세션과 이벤트와 연동할 수 있습니다.
- 멀티 터치 어트리뷰션(Multi-Touch Attribution): 마케팅 채널 및 캠페인에 다양한 어트리뷰션 모델을 할당하여, 채널 및 캠페인의 성과를 측정할 수 있도록 해줍니다.
- 광고 네트워크 통합(Advertising Network Integraton): 광고 노출, 광고 클릭, 캠페인의 광고 비용 등 통합적인 마케팅 지표를 확인할 수 있습니다.
- 광고 네트워크 오디언스 공유(Ad Network Audience Sharing): 캠페인 또는 리타게팅을 위해 고객 세그먼트를 광고 네트워크와 연동할 수 있습니다.
Amplitude는 유저 유입 후의 웹/앱 사용을 분석하는 데 강점있었습니다. 하지만 유입 채널, 멀티 터치 어트리뷰션, 광고 네트워크 통합 기능을 최근 추가하였고, UA에서 이용 가능했던 기능을 최대한 이용할 수 있게 노력했습니다. 예들 들어, 구글 검색광고, Bing 검색 광고 등의 채널별로 유입되는 유저 수를 확인 할 수도 있고 랜딩 페이지, 페이지 이탈률 등을 볼 수도 있습니다.
또한, UA에서 멀티 터치 어트리뷰션을 트래킹할 수 있는 기간이 90일로 제한되어있는 반면, Amplitude에서는 제한없이 원하는 기간만큼 트래킹 가능합니다. 게다가 UA가 제한된 영역에서만 어트리뷰션 모델을 할당할 수 있는 반면, Amplitude에서는 모든 영역에 어트리뷰션을 적용할 수 있습니다. (GA4에서도 지원되지 않는 기능입니다!😉)
구글 애즈(Google Ads)와의 호환성도 걱정할 필요 없습니다. 구글 애즈의 광고 노출, 클릭, 비용, 캠페인 등의 정보를 불러올 수 있도록 시스템이 구축되어있습니다.
Q4. Amplitude에서 Google Ads로 유저 정보를 넘길 수 있나요?🧑🚀
UA의 장점 중 하나는 Google Ads와의 연동성이 좋다는 점입니다. UA의 고객 세그먼트를 Google Ads에 연동하여 광고에 활용할 수 있죠. 그러나 이 기능은 Google Signals를 사용해야만 이용 가능합니다. Google Signals는 고객 사생활 침해의 우려가 있어 많은 국가(특히 유럽)에서 금지된 기능입니다. 즉 몇몇 국가에서는 UA와 Google Ads의 연동 기능을 사용할 수 없습니다.
*Google Signals : 익명 사용자를 식별할 수 있는 기능 (옵트 아웃 방식으로 수집한 개인 정보는 제외)
Amplitude는 많은 파트너사와의 협력을 통해 Google Ads와 같은 광고 플랫폼에서 고객 세그먼트를 이용할 수 있는 합법적인 방법을 마련해두었습니다. 즉, Google Ads가 문제 없이 호환된다는 거죠! Google Ads뿐만 아니라 다양한 광고 플랫폼과도 호환됩니다.🤗
Q5. Amplitude에도 통합 테스트 기능이 있나요?👩🔬
Google의 무료 테스트 플랫폼인 Google Optimize의 서비스가 종료되었습니다. 테스트는 데이터 분석의 핵심입니다. 데이터를 통해 인사이트를 얻는 데에 그치지 않고, 테스트를 거쳐 이 인사이트가 정말 유의미한 것인지 확인하는 작업이 필요합니다.
Amplitude는 이미 2년 전에 Amplitude Experiment라는 통합 테스트 기능을 출시했습니다. Amplitude Experiment에서는 기능 플래그(feature flagging), A/B 테스트 등 다양한 실험 기능을 사용할 수 있습니다. Amplitude Experiment가 무료는 아니지만, Amplitude Analytics와 사용하면 분명 엄청난 시너지 효과를 볼 수 있습니다.
Q6. Amplitude에는 데이터 제한 요소가 없나요? 👨💻
UA 및 GA4는 확장성, 데이터 샘플링, 측정 기준, 계량 분석에서의 제약 사항이 굉장히 큰 편입니다. 제약 사항을 정리하면 다음과 같습니다.
- 마케팅 어트리뷰션의 전환 추적을 90일로 제한
- 속성(property) 당 이벤트 범위 커스텀 측정 기준 125가지로 제한
- 속성 (property) 당 사용자 범위 측정 기준 100가지로 제한
- Enhanced Ecommerce 한 가지 측정 기준으로만 배열 가능
- 이벤트 및 이벤트 파라미터의 이름 40자로 제한
- 이벤트 속성 값 이름 100자로 제한
- 사용자 속성 값 이름 36자로 제한
- 사용자 ID 값 256자로 제한
- 페이지 위치 값 1,000자로 제한
- 사용자 기반 세그먼트 활용 시, 리포트 범위 93일로 제한
- 탐색 리포트는 최대 5가지 측정 기준, 10가지 계량 분석, 500줄의 데이터로 제한
- 새로운 계량 분석/측정 기준을 위한 대기 시간 24시간
- 데이터 백필(backfill) 72시간 제한
- Looker Studio에 대한 API 할당량 제한
이외에도 UA와 GA4엔 크고 작은 제한 사항이 많습니다. 유료 버전이 이정도니, 무료 버전은 훨씬 심각하겠죠. 때문에, 대형 웹/앱에서는 Amplitude를 더 선호합니다. Square, PayPal, Doordash와 같은 고객사들은 GA4가 처리할 수 없는 데이터 볼륨을 가지고 있어, Amplitude를 선택하였습니다.
물론 GA4를 사용하더라도 BigQuery나 Looker Studio를 사용해서 더 복잡한 쿼리를 실행할 수도 있습니다. 하지만 이런 툴을 활용하려면 SQL이나 BI 사용법을 또 배워야합니다. 일반적인 마케팅이나 프로덕팀에게는 부담스러울 수 밖에 없죠🤦♀️
Amplitude를 사용하면 가장 기초적인 활용부터 아주 복잡한 수준의 활용까지 동일한 인터페이스로 처리합니다. 배우고 활용하기 매우 쉽다는거죠! 물론 BigQuery, Snowflake, Redshift 등으로 데이터를 전송할 수도 있습니다. 위에서 언급한 수 많은 제약 사항들도 신경쓸 필요없고, 거의 모든 크기의 데이터셋도 적용 가능합니다!
Q7. 프라이버시 문제는 없나요?👮♀️
유럽에는 GDPR(General Data Protection Regulation: EU의 일반 개인정보 보호법)이라는 강력한 법률이 존재합니다. 이 법안으로 인해 GA4는 몇몇 유럽 국가들에서 프라이버시에 관한 비난을 받고 있으며, 심지어 '불법'을 자행하고 있다는 이야기도 들려옵니다. 이번 포스팅에서 해당 법안에 대한 상세한 설명을 할 순 없지만, 확실한 점은 Amplitude가 GA4에 비해 프라이버시 문제에서 훨씬 자유롭다는 점입니다.
Q8. Amplitude만의 기능도 소개해주세요! 👩🏫
Amplitude만의 차별화된 기능은 너무나도 많습니다!! 주요한 기능 몇 개만 살펴보겠습니다.
- 협업 및 데이터 스토리텔링 : Amplitude는 디지털 분석을 팀 스포츠처럼 만들어야한다고 생각합니다. 그렇기 때문에 비디오, 이미지, 차트, 그래프, 리치 텍스트(rich text) 그리고 주석까지 모두 '노트북(Notebooks)'이라는 하나의 공간에서 공유할 수 있도록 하고 있습니다. '노트북'안에는 토론 스레드가 있어, 팀원들의 분석결과와 생각까지 공유할 수 있습니다. slack, jira, notion, miro를 사용한다면, 연동하여 활용할 수도 있습니다.
- 컨버전 퍼널 : UA에도 컨버전 퍼널이 있긴 하지만, Amplitude의 컨버전 퍼널과 비교가 되지 않습니다. Amplitude의 컨버전 퍼널은, 머신 러닝 기술을 적용하여, 고객이 이탈할 것같은 조건이 감지되면 미리 알림을 주어 예방할 수 있도록 합니다.
- 리텐션 레포트 : UA의 리텐션 레포트는 기초적인 기능만 제공하지만, Amplitude의 리텐션 레포는 훨씬 더 많은 정보를 제공합니다. 새로운 고객, 현재 고객, 활성화된 고객, 휴면 고객을 표시하는 고객생애주기 보고서부터, N-Day 리텐션, 언바운디드 리텐션 (특정 날짜를 포함하여, 그 이후에 돌아온 고객) , 리텐션 추이 등을 제공합니다. 또한 UA에서 리텐션 레포트를 작성하려면, SQL을 통해 20개 이상의 배열을 수동으로 작성해야하지만, Amplitude에서는 외부 툴을 사용할 필요없이 간단한 인터페이스를 통해 레포스를 만들어낼 수 있습니다.
- 데이터 거버넌스 : Amplitude는 데이터 거버넌스 회사를 통째로 인수할 정도로 데이터 거버넌스에 진심입니다. 데이터 트래킹 플랜을 작성하고, 데이터 품질 이슈를 찾아내고, 데이터의 스파이크(spike)나 갭(gap)을 관찰할 수 있는 기능을 제공합니다. 또한, 사용자가 중복 세그먼트나 메트릭스를 생성하지 못하도록 방지하여, 세그먼트나 메트릭스가 급증한다거나, 분석에 방해가 되지 않도록 합니다.
- 고객 지원 : UA의 경우, 교육 및 지원을 외부 기업에 위임합니다. 반면, Amplitude는 직접 고객 지원을 하죠. CSM(Customer Success Manager : 고객 성공 관리자)가 배정되어서 전문적이고 정기적인 지원을 받을 수 있습니다. 필요한 경우에는 Amplitude 활용에 대한 대면 교육도 신청할 수 있죠.
Q9. 전문가는 어떤 제품을 더 추천하나요?👩⚖️
케임브릿지의 리서치 기업 Forrester에서 발행한 '2022 Digital intelligence platform wave report'를 살펴보면, 제공 가치와 비전 부문 둘다 Amplitde가 UA 및 GA4보다 뛰어나다고 평가받고 있음을 확인하실 수 있습니다!

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기
![[FAQ] 구글 UA 종료 & GA4 전환에 대해 궁금한 모든 것 [FAQ] 구글 UA 종료 & GA4 전환에 대해 궁금한 모든 것](https://maxonomy-prd-pub-a-s3.s3.ap-northeast-2.amazonaws.com/upload/BoardThumbnail/38758/MsrSf8ZV.webp)
[FAQ] 구글 UA 종료 & GA4 전환에 대해 궁금한 모든 것
✒️ Adam Greco | Amplitude 프로덕트 에반젤리스트Adam Greco는 디지털 분석 업계의 리더입니다. 지난 20년 동안 수백 개 이상의 조직에 분석의 베스트 프랙티스를 조언했으며, 분석과 관련된 300개 이상의 블로그 글을 쓰고 책을 저술했습니다. Adam은 분석 컨퍼런스에서 자주 연사로 활동하며, Digital Analytics Association의 이사직을 역임했습니다.구글 애널리틱스(GA)는 무료 디지털 분석 제품이자 유비쿼터스 광고 플랫폼으로써 디지털 분석 시장에서 가장 큰 점유율을 차지하고 있습니다. 많은 Amplitude(앰플리튜드) 고객들은 Amplitude(앰플리튜드)와 구글 애널리틱스를 동시에 사용하고 있습니다. Amplitude(앰플리튜드)를 매우 효과적으로 활용하고 있는 고객조차 GA를 빈번하게 사용하고 있는데, 이는 GA와 구글의 광고 네트워크가 긴밀하고 밀접하게 연동되어 있는 시스템으로 디지털 광고 공간에서의 독점력이 있기 때문입니다.구글이 UA 제품 서비스를 종료한다는 것을 발표한 이후, Amplitude(앰플리튜드) 고객들의 질문이 끊이지 않고 있습니다. 저는 여러 차례 이 주제에 대해 고객들과 대화를 나눠왔고, 이번 포스팅에서는 그 중 몇가지 대중적이고 중요한 질문과 제가 답변했던 내용을 공개합니다.저와 이야기 나누었던 대부분의 고객은 구글의 최신 업데이트와 그 영향력에 대해 관심이 많았으나, 동시에 우려도 있었습니다. 그렇기 때문에 질문의 내용이 비판적인 경향이 있으며, 저는 GA 전문가가 아니기 때문에 그동안의 디지털 분석 경력을 바탕으로 고객으로부터 들은 주요 내용과 답변을 정리했음을 참고해 주십시오.본 포스팅에서는 GA4가 UA에 비해, 혹은 Amplitude(앰플리튜드)가 GA4에 비해 좋다, 좋지 않다를 평가하지 않습니다. GA를 사용하고 있는 Amplitude(앰플리튜드) 고객이, UA 종료 발표로 인해 일반적으로 거론되고 있는 질문에 대한 해답을 이해하는 데 목적을 두고 있습니다.구글은 왜 GA4로 전환할까요?디지털 분석 산업은 최근 몇 년간 많은 변화를 겪고 있습니다. 웹사이트와 모바일 애플리케이션의 영향력이 증가되면서 기존의 웹사이트 세션 및 페이지 뷰 중심의 분석 활용은 줄어들고 있습니다. 단일 페이지 애플리케이션과 멀티 플랫폼 활용 등으로 디지털 경험이 더욱 복잡해짐에 따라, 대부분의 기업에서는 보다 정확한 디지털 분석을 위해 이벤트 기반의 데이터 모델로 전환하고 있습니다.기존의 GA는 모바일 앱이나 이벤트 기반 분석을 위한 모델로 개발되지 않았기 때문에, 구글은 이를 보완하기 위해 모바일 앱과 이벤트 데이터를 베이스로 개발하는 Firebase를 인수했습니다. 인수 후에 구글은 GA 고객이 Firebase를 활용하여 모바일 앱 분석을 하도록 했으나, 모바일 앱과 이벤트 기반 모델의 인기가 높아짐에 따라 Firebase 플랫폼을 확장시키는 것으로 결정했습니다. (초기에는 ‘GA 앱 + 웹’ 이었으나 현재는 GA4가 되었습니다)GA4로 반드시 마이그레이션 해야하나요? 여기에는 무엇이 포함되나요?구글은 최신 공개된 GA4로 마이그레이션하는 것을 권고했습니다. 그러나 GA4로 마이그레이션하는 작업이 그리 간단하지는 않습니다. 기존과 전혀 다른 데이터 구조를 사용해야 하기 때문에, UA에서 GA4로 전환하는 것은 완전히 새로운 분석 솔루션으로 전환하는 것만큼이나 많은 작업이 소요됩니다. 예를 들어, 조직에서 GA를 통해 이커머스 추적을 사용하는 경우 마이그레이션을 위해 수행해야 하는 여러 특정 단계들이 있으며 이전 버전과의 호환성 문제가 발생 될 수 있습니다.제가 이야기 나눴던 일부 기업에서는 ‘현재 완료해야 할 작업이 많다면 GA를 그대로 사용하는게 합리적인지, 혹은 다른 솔루션 업체를 검토하는 것이 나은지’를 문의해왔습니다. 지금처럼 서비스가 종료되는 강제적인 조건에서는 해당 조직이 현재 얼마 만큼의 기술 투자를 받고 있는지 확인해 볼 수 있는 좋은 기회 이기도 합니다. 현재 많은 기업의 UA는 ‘autopilot’이라는 자동 조정 장치에 의해 구현 되고 있다고 들었습니다. 이 autopilot은 유용하지만 오랜 시간 업데이트 되지 않았기 때문에 실용적인 인사이트를 제공하지는 않았습니다.사용도가 낮은 환경으로 구현된 GA를 보완하기 위해서, GA4는 즉시 사용 가능한 새로운 기능들 (예: 아웃바운드 링크, 검색어 기능, 파일 다운로드, 등)로 구성되어 있습니다. 타 디지털 분석 제품들과 GA를 함께 활용하는 기능들이 새롭게 추가되어, GA4로 업그레이드를 한 뒤에 그 효과를 확인하는 기업이 많아질 것 입니다. 하지만 저는 이런 방안들이 기업에서 디지털 분석 프로그램 도입을 검토하는 기회가 되기를 바랍니다.대부분의 Amplitude(앰플리튜드) 고객들이 일정기간 GA도 함께 사용할 것으로 예측되고 있기 때문에, 우리의 목표는 GA 없이 Amplitude(앰플리튜드) 한 가지 만을 분석 솔루션으로 활용해도 충분히 업무에 활용 가능하다는 것을 뒷받침할 수 있는 제품 및 마케팅 활용 사례를 제공하는 것입니다.이전 GA 데이터는 어떻게 되나요?UA 종료 임박과 관련하여 많은 분들께서 가장 관심있어 하는 부분은 과거 데이터의 손실 여부입니다. 구글이 공시한 날짜를 고려해 보면, 많은 기업에서 즉시 조치를 취하지 않으면 전년 대비 데이터를 확인하지 못하게 될 것 이라는 우려가 있습니다. 대부분의 기업에서는 연도별 데이터 확보를 중요하게 생각하고 있으나 실제로 이를 사용하는 기업을 그렇게 많이 보지는 못했던 것 같습니다. 과거 데이터에 진정으로 관심을 갖고 있는 기업이라면 이미 내부 저장소에 분석 데이터를 보유하고 있을 것이므로, GA 종료 날짜가 다가온다고 해도 크게 혼란은 없을 것으로 예상됩니다.하지만 이 경우라도 이전 데이터를 보존하는 것이 조직에 중요한 경우, 안전을 위해 7월 1일 이전(UA 데이터 수집이 중지되기 1년 전) GA4 인스턴스에 중요 KPI를 추가하는 것이 좋습니다. 혹은 Amplitude(앰플리튜드)의 무료 GTM 템플릿(클라이언트 측 또는 서버 측)을 사용하여 데이터를 Amplitude(앰플리튜드)로 전송할 수도 있습니다. 벤더가 제시한 임의 날짜에 따라 단기적으로 결정하는 것보다는 장기적으로 어떤 플랫폼에 투자할 것인지를 검토하는 것이 더 좋습니다. 개인적인 견해로는 UA 종료 발표에 따른 사용자의 불안감을 고려해 볼 때, 구글이 결국에는 종료 날짜를 연장할 가능성이 크다고 생각합니다.GA4는 시장에서 사용될 준비가 되었나요?많은 분들께서 UA에서 가능했던 모든 기능을 GA4로 대체할 수 없다고 말합니다. 조금만 검색해보면 GA4의 단점을 적어놓은 트위터와 링크드인 게시물을 쉽게 찾을 수 있는데, 어떤 사람들은 GA4가 아직은 시장에서 사용되기에 완벽히 준비되지 않았다고 표현하기도 합니다.GA4가 UA에 비해 몇 가지 개선 사항이 있는 것처럼 보이지만 우려되는 점도 있습니다. 많은 분들의 의견을 통해 확인한 내용을 정리해보자면 다음과 같습니다.이전에는 즉시 사용 가능한 리포트가 여러 형태로 제공되었다면, GA4에서는 탐색 리포팅 인터페이스를 사용하는 것으로 바뀝니다. 이 새로운 인터페이스 구성은 궁극적으로는 보다 강력한 리포팅 기능을 제공하지만, 이전 UA 사용자(특히 초보자)는 사용이 어려워 리포트를 익히는 데 별도의 트레이닝이 필요해 보입니다.GA4에서 문제가 될 수 있는 부분은 디멘션 및 디멘션 문자 길이에 대한 제한이 있다는 점입니다. UA 고객이 GA4에서 사용 가능한 것보다 더 많은 디멘션을 활용했을 경우도 있을 수 있습니다. 제 경우에는 고객이 우선 순위를 지정할 수 있도록 하는 것을 선호하는 편이지만, 대규모로 구현을 해야하는 고객에게는 결국 문제가 될 수 있습니다.GA4에서 한개의 디멘션에 포함된 디멘션 카디널리티가 다른 디멘션에 영향을 줄 수 있는 상황이 발생할 수 있습니다. (표준 보고서 조건에서)표준 속성이 있는 경우 카디널리티가 높은 측정 기준을 생성하지 마십시오. 카디널리티가 높은 측정 기준은 일별 고유 값이 500개를 초과하는 측정 기준입니다. 이 측정 기준은 리포트에 부정적인 영향을 미칠 수 있으며, 데이터가 (기타)행에 집계될 수 있습니다. 예를 들어 사용자 ID 와 같은 높은 카디널리티 측정 기준의 경우(즉, 각 고유 사용자에 대한 ID를 수집하려는 경우)에는 User-ID 기능 을 사용합니다.카디널리티- 카디널리티는 측정 기준에 할당된 고유한 값의 개수를 나타냅니다.- 일부 측정 기준은 고유한 값의 개수가 고정되어 있습니다(예: *기기* - 3: 데스크톱, 태블릿, 모바일). 반면 하루에 고유한 값이 500개를 초과하는 측정 기준은 카디널리티가 높은 측정기준으로 간주됩니다.- 카디널리티가 높은 측정 기준이 있으면 리포트의 행 수가 증가하므로 리포트가 행 한도에 도달하여 데이터가 [(다른) 행] 아래에 집계될 가능성이 커집니다. (https://support.google.com/analytics/answer/9309767)GA4에서는 측정 기준 카티널리티로 인해 표준 리포트와 탐색 리포트에 서로 다른 측정 항목 합계가 표시되는 상황이 있을 수 있습니다.GA4는 BigQuery와 더 많이 통합 되어 고급 사용자에게 유용할 수 있지만, 일반 사용자는 고급 사용자 인터페이스를 새로 배워야 합니다.BigQuery로 GA4 데이터 내보내기는 하루에 100만 이벤트로 제한되며, 이로 인해 그동안 ‘무료’ 분석을 사용해 온 많은 조직이 구글에 비용을 지불하게 됩니다.GA4 ‘무료’ 버전의 데이터 보존 기간은 최대 14개월 입니다. 즉, BigQuery에 보존하려는 모든 데이터를 저장해야 하며, 장기간 리포트에 탐색 보고 인터페이스를 사용 할 수 없습니다.현재 GA4에는 연계된 써드파티 솔루션이 거의 없습니다.유럽내에서 구글의 개인정보 보호 문제는 어떤가요?유럽에서는 GA의 합법성과 관련된 법안이 논의되고 있습니다. 대부분 사소한 문제이지만, 광고 네트워크 및 다국적 기업과 연결된 디지털 분석 솔루션에서는 몇 가지 중대한 이슈가 확인되고 있습니다. 저는 고객이 결정할 수 없는 외부적인 요인(법적 판결)으로 인해 디지털 자산에 대한 모든 가시성을 잃게 될 수도 있다는 점을 우려하고 있습니다. 그리고 이 두려움이 결코 실현되지 않기를 바랍니다.개인 정보 문제의 위험을 증가시키는 GA의 특정 부분이 있습니다. 예를 들면, GA가 익명 방문자를 식별하고 데이터를 수집하는데 사용하는 메커니즘인 구글 시그널 데이터 입니다. 구글 시그널을 사용하면 다음의 두 가지 작업을 수행할 수 있습니다. 다른 솔루션과는 차별화되는, 오직 GA에서만 가능한 작업입니다.광고 네트워크를 활용하여 사용자(익명 사용자 포함)의 다양한 기기에서 추적 수행연령, 성별 및 광고 관심 분야와 같은 사용자에 대한 인구 통계 정보 추가구글 시그널은 대부분의 사람들이 최소 한 가지의 구글 제품 (예: 크롬, 지메일)을 사용하면서 ‘광고 개인화’ 기능을 끄지 않는다는 사실을 이용하여 이 작업을 수행합니다. 구글은 방대한 광고 네트워크를 보유 하고 있기 때문에 사용자의 인구 통계 및 관심 정보를 수집하고 이를 GA와 익명으로 공유 하게 됩니다. 예를 들어, 한 중년 여성이 지메일을 사용한다면, GA는 구글 계정에서 이 중년 여성의 인구 통계적 정보와 관심 분야를 확인할 수 있습니다. 저 또한 한 명의 디지털 분석가로서 추가적인 인구 통계적 정보와 관심 정보를 얻는 것은 좋지만, 사용자는 구글의 광고 네트워크가 자신에 대한 정보를 GA에 제공하고 있다는 사실을 깨닫지 못할 가능성이 높습니다.구글 시그널은 GA 관리자가 해제할 수 있지만, GA를 사용하는 대부분의 조직에서는 이 기능을 사용하도록 설정하고 있으며, 구글 계정 내에서 광고 개인화의 비활성화에 대해 아는 사용자는 거의 없습니다. 또한 현재 GA는 조직이 유저 ID와 기기 ID만 사용할 수 있는 옵션을 제공하는 대신, 구글 시그널 데이터를 포함하면 유저 ID로 유저(사용자)를 추적할 수 있도록 허용하고 있습니다.현재는 구글 시그널 정보가 모든 동의 요구 사항을 준수하는 경우 GDPR과 함께 사용되어도 적합하다고 간주되지만, 구글 시그널은 GDPR의 원칙에 어긋나므로 GA에서 구글 시그널 기능을 제거하거나 ‘옵트인’을 선택하게 하도록 EU에서 강제할 수도 있습니다. 이렇게 될 경우 GA의 장점 중 일부를 사용하지 못하게 됩니다.구글의 전체 비즈니스에서 분석(Analytics)은 얼마나 중요한가요?저와 이야기를 나눴던 많은 분들은 강력하고, 때로는 무료로 제공되는 GA의 디지털 분석 제품에 항상 액세스 할 수 있는 환경을 경험해왔습니다. 저는 이들에게, GA가 처음에는 구글의 디지털 광고 캠페인의 성과 측정에 도움을 주기 위해 인수(Urchin)되어 무료로 제공되었다는 점을 강조하고 싶습니다. 구글은 기업이 디지털 광고에 더 많은 비용을 지출하도록 하는 데 데이터가 핵심 열쇠라는 것을 알고 있습니다. GA는 구글 광고와 밀접하게 연결되어 있습니다.기업에서 향후 10년 동안 사용할 디지털 분석 플랫폼을 고려할 때, 구글의 광고 비즈니스가 분석 비즈니스보다 훨씬 더 중요하다는 사실을 인식하는 것이 중요합니다. 디지털 광고가 (개인정보 보호 문제로 인해) 사라지거나 크게 줄어들 경우에도 구글은 GA 무료 버전 혹은 지원을 위해 계속해서 자금을 투자할까요? 저는 GA 서버를 호스팅하고 GA 제품을 지원하는 데 많은 비용이 들어간다고 확신합니다. 지금처럼 광고가 캐시 카우로 큰 자금을 생산하고 있을 때는 문제가 되지 않습니다. 하지만 광고비가 고갈되면 어떻게 될까요? 그리고 GA가 많은 법적 이슈를 일으켜 구글의 핵심인 광고 비즈니스에 영향을 주기 시작했다면 어떻게 될까요? 분석 제품으로 인해 광고 수익을 잃게 될 것이라는 우려를 하게 된다면 분석 제품은 눈엣가시로 전락할 수 있습니다. 구글의 모든 개인 정보 보호 및 소송 문제를 감안해보면 분석 제품이 구글의 발목을 잡게 될 수도 있습니다. 미래를 예측하기는 어렵지만, 저와 이야기하는 일부 조직에서는 광고와 분석이 주요 비즈니스 모델인 기업(벤더)에 의존하는 것이 언젠가는 다시 그들을 괴롭힐 수 있다는 우려를 나타내고 있습니다.또한 현재 구글에는 GA의 서비스 규모에 맞게 다른 분석 솔루션 벤더사보다 많은 수의 엔지니어가 있지만, 언젠가는 구글이라는 거대한 기업 내에서 분석 제품이 사라지게 될 수도 있습니다. 일부의 말에 따르면, 최근에는 몇 년 전과 비교하여 기능 요청과 버그 보고가 거의 이행되지 않았다고 합니다. 반면, 분석 제품만을 유일하게 제공하는 벤더사와 협력할 때는 제품을 개발하고 개선하려는 의지가 높다는 이점을 확인할 수 있습니다.구글의 지원 및 서비스 방식에는 어떤 변화가 있을까요?저와 이야기를 나눈 기업 중 일부는 구글의 직접적인 지원을 원한다고 말했습니다. 전통적으로 GA 고객은 구글과 직접적인 상호 작용이 많지 않았습니다. 오히려 구글의 대행사 또는 파트너사와 협력하는 것이 일반적이었습니다. GA에 전문 역량을 갖춘 열정적인 대행사와 컨설턴트가 있다는 것에는 의심할 여지가 없습니다. 그러나 때로는 문제가 발생했을 때 솔루션 공급 기업인 구글과 직접 논의하는 것이 필요할 수 있습니다. 일부는 GA4에 구글의 직접적인 지원이 포함될 지 궁금해 했습니다. 하지만 아직까지는 이 문제에 대해 새로운 것을 보지 못했고, GA4도 과거와 같은 방식으로 지원될 것으로 예상됩니다.GA4는 데이터 품질과 거버넌스를 어떻게 지원하나요?오늘날 대부분의 GA 고객은 데이터 분류 체계(텍소노미) 리스트를 정리한 구글 시트에서 실행을 관리합니다. 같은 관점에서 Amplitude(앰플리튜드) 고객들이 Amplitude(앰플리튜드)에 대해 만족하는 것 중 하나는, Amplitude(앰플리튜드)가 데이터 거버넌스에 많은 투자를 하고 진심으로 연구하고 있다는 점입니다. 그리고 저는 고객들이 GA4도 동일한 기능을 갖추기를 원한다고 생각합니다.이벤트 기반 분석 플랫폼은 고객 행동을 추적하고 분석하는 데 확실히 더 강력하지만, 그만큼 데이터 관리에 더 많은 투자를 해야합니다. 데이터 거버넌스를 위한 강력한 툴킷은 반드시 필요하며, 이는 분석 실행을 문서화하는 구글 시트로는 충분하지 않습니다.최적의 의사 결정을 이끄는 훌륭한 인사이트를 확인하려면, 이벤트를 시간에 따라 계획하거나 도구화 시키고, 검증, 조직화, 변형 및 여러 방면에서 관찰해야 합니다. 훌륭한 데이터 거버넌스 도구가 없다면 신뢰할 수 없는 데이터와 거듭되는 재계측으로 인해 장기적으로는 비용이 높아집니다. 이러한 악순환은 대부분의 분석 작업이 실패하는 이유이기도 합니다.보다 높은 데이터 품질, 엔지니어의 만족, 데이터 플랫폼 비용의 절감을 위해 고객은 GA4(적어도 GA360)가 궁극적으로 다음 기능들을 제공하기를 바라고 있습니다플래닝 트래킹 기본 제공(built-in)이벤트 유효성 확인을 위한 관찰 검사개발자 우선 환경 (Jira 연동, 명령줄, SDK, 분기)보다 강력한 데이터 속성 변환 유형그러나 GA4가 데이터 거버넌스 영역에 얼마나 많은 투자를 할지는 조금 더 지켜봐야 할 부분입니다.GA4가 제공하는 데이터 및 마케팅 통합 기능은 무엇인가요?오늘날의 기업에서는 데이터 웨어하우스, CDP, 이메일 인게이지먼트 및 메시징 플랫폼, 광고 네트워크, 어트리뷰션 및 위치 인텔리전스 툴, 실험 플랫폼 등 많은 도구를 사용합니다. 현재 GA4는 BigQuery, 세일즈포스 마케팅 클라우드와 연동되어 있으나, 이를 위해서는 백엔드 개발 및 API 작업이 필요합니다. 단일 고객 행동 프로파일, 고객 인게이지먼트 및 여정 전체 보기, 다양한 채널과 도구에서 데이터에 조치를 취할 수 있도록 스택을 통합하려는 경우, GA4에는 몇 가지 제한 사항이 있을 수 있습니다. 점점 더 많은 기업에서 디지털 분석 솔루션과 Snowflake, Amazon S3, BigQuery 등과 같은 데이터 웨어하우스를 함께 활용하고 있으나, 현재 GA에서는 BigQuery만 즉시 사용 가능하며 다른 데이터 웨어하우스와 연동하려면 기업에서 추가 개발이 필요합니다.마치며초반에 언급했듯이 UA 종료 및 GA4와 관련된 수 많은 질문과 알려지지 않은 내용이 있었습니다. Amplitude(앰플리튜드)를 사용하는 고객도 다른 조직과 마찬가지로 이에 영향을 받습니다. 바라건대 여러분이 여기에 제공된 정보를 통해 그동안 지녔던 수 많은 궁금증에 대한 답을 얻으셨으면 좋겠습니다. 주요 기술이 변화함에 따라 많은 걱정이 있으실 것으로 생각됩니다. GA는 보편적으로 사용되던 서비스이므로 그만큼 더 많은 질문과 우려가 있는 것이 당연합니다. 앞으로 많은 사용자 커뮤니티에서, (저보다 GA에 대해 많이 알고 있는) GA전문가들이 이러한 내용을 다루면서 더 나은 답을 찾게 될 것이라고 확신 합니다. 아마 대부분의 기업에서 큰 혼란은 발생하지 않겠지만, 기업에서 사용하는 모든 기술을 지속적으로 재평가하고 앞으로의 최선책을 결정하는 일은 무엇보다 중요하다고 말씀드리고 싶습니다.

A/B테스트 개념과 데이터 분석 방법🔍
A/B 테스트는 두 가지 혹은 그 이상의 서로 다른 버전(Variant)을 비교하여 어느 쪽이 더 나은 성과를 내는지 판단하는 실험 기법입니다.

MoM(월별 성장률) 분석시 저지르는 일반적 3가지 실수
월별 성장이란 무엇입니까?월별 (MoM) 성장은 특정 메트릭 값의 변화를 전월 값의 백분율로 표시합니다.월별 성장은 월별 수익, 활성 사용자, 구독 수 또는 기타 주요 지표의 성장률을 측정하는 데 자주 사용됩니다. 모바일 앱, SaaS 제품 또는 웹 사이트와 같은 디지털 제품을 작업하는 경우 MoM 활성 사용자 증가에 관심이 있을 것입니다. 이는 제품 또는 회사의 성장과 성공에 대해 이야기하는 가장 일반적인 방법입니다.MoM 성장률을 계산하는 방법한 달 동안의 월별 성장을 계산하려면 이번 달의 총 사용자 수와 지난 달의지난달의 총 사용자 수의 차이를 취한 다음 이를 지난달의 합계로 나누면 됩니다. 동일한 공식을 사용하여 주별 성장 또는 전년 대비 성장을 계산할 수 있습니다. 한 달 동안의 성장률을 계산하는 대신 6개월 동안의 MoM 성장률을 계산하고 싶다고 가정 해 보겠습니다. CMGR (월간 복합 성장률) 을 계산하려는 경우입니다.관련 자료 : 활성 사용자는 누구입니까? 사용자 분석을 위한 전략Compound Monthly Growth Rate (CMGR) 공식CMGR은 해당 기간 동안 매달 일정한 속도로 성장한다고 가정하여 특정 기간 동안의 성장률을 설명합니다. 활성 사용자가 다음과 같이 증가했다고 상상해보세요.CMGR을 계산하려면 위의 숫자를 다음 공식에 대입합니다.예를 들면 다음과 같습니다.CMGR은 월별마다 다르지만 위의 전체 기간 동안 20%입니다. 예를 들어 1월부터 2월까지의 MoM 성장률은 10%에 불과한 다음 2월부터 3 월은 36%로 점프합니다. CMGR을 사용하면 1월부터 6월까지 매달 일정한 성장률로 성장하고 있다고 가정합니다. 이 예에서 이는 다음을 의미합니다.이제 다음 단계로 넘어갑시다.위에서 과거 기간 동안 CMGR을 계산했습니다. 5개년 사업 계획을 세우고 사업이 어떤 모습 일지에 대한 프로젝트를 계획한다고 가정해 보겠습니다. 이대로라면 2022년 12월까지 활성 사용자 수는 5십만 명을 넘을 것입니다.피해야 할 MoM 성장과 관련된 3가지 일반적인 실수성장 모델을 구축할 때 부주의한 실수를 하는 것은 생각보다 흔합니다. 다음은 MoM 데이터 작성 시, 저지르는 3가지 일반적 실수입니다.1. MoM 성장으로 모델링 된 작은 절댓값 앱이나 제품의 사용자 수가 적으면, MoM 달성을 훨씬 쉽게 이룰 수 있습니다. 즉, 적은 수의 MoM 성장에 대한 내러티브를 구성하는 것이 더 쉽고 비즈니스가 성장함에 따라 그 비율을 유지하기가 더 어렵습니다.이 예에서는 2018년 1월부터 2018년 6월까지 매월 20% 의 성장을 경험하고 있습니다. 하지만 절대 수치로 보면 100명의 활성 사용자에서 249명의 활성 사용자로만 증가하는 것입니다. 여기서 문제는 이 비율 증가가 확장되지 않는다는 것입니다. 한 번의 언론 멘션으로 100 명에서 120 명의 월간 활성 사용자 확보는 쉽게 할 수 있습니다. 그러나 한 달에 활성 사용자가 1,000,000명에서 1,200,000명으로 20 % 증가하려면 강력한 성장 엔진이 필요합니다.핵심 요점 : 사용자 수가 적을 때엔 MoM을 주시할 수 있지만 사용자 수가 더 많아지면 참여도 지표 , stickness 및 사용자 행동 데이터를 살펴봄으로써 성장이 장기적으로 지속될 것인지를 알려주는 기본 메커니즘 구성에 집중해야 합니다.2. MoM 성장으로 모델링 된 비일관된 성장성장은 예측할 수 없습니다. 한 달은 MAU를 두 배로 늘리고 다음 달에는 변화 없이 그대로 유지될 수 있습니다. 이런 일이 발생한다면 일관된 CMGR로 모델링하여 변동하는 성장을 모순되게 만드는 것은 실수입니다.여기에서 CMGR이 20% 이지만 특정 기간 동안 (5월부터 6월까지)만 20% 근처에 있다고 가정해 봅시다. 그 외에는 2% 성장과 82% 성장 사이에서 크게 변동하고 있습니다. 결론은 다음 달 성장률이 얼마인지 알지 못한다는 것입니다. 성장률은 도처에 있지만 데이터는 여전히 무언가를 알려줍니다. 앱을 위한 일관된 성장 엔진을 구축하지 않았던 거죠.성장이 있는 달과 성장이 없는 달의 차이를 모를 가능성이 높습니다.핵심 요점 : 성장이 일관되지 않은 경우, 단일 CMGR보다는 월별 성장률의 추세로 성장을 논의하는 것이 더 정확합니다.3. MoM 성장으로 모델링 된 선형 성장귀하의 비즈니스는 성장하고 있으며 지속적으로 성장하고 있습니다. 다만 선형 성장을 기하급수적인 성장으로 착각하지 마십시오.6개월 동안 사용자가 10,000 명에서 20,000 명으로 두 배 증가했다고 가정해 보겠습니다. 이는 15%의 Mom 성장률을 의미합니다. 자세히 살펴보면 문제가 나타납니다. 시간이 갈수록 성장률은 둔화되는 것 같습니다. 숫자가 커짐에 따라 성장이 감소하는 것은 성장이 기하급수적이지 않다는 신호이며 아마도 더 선형적일 것입니다. 여기서는 15% MoM이 성장하고 있다고 말하는 대신 매월 2,000명의 활성 사용자를 추가한다고 말함으로써 절댓값을 고수하는 것이 더 정확합니다.핵심 사항 : 모든 성장이 동일하지는 않습니다. 성장이 선형으로 발생하는 경우 절대 사용자 수의 월별 성장을 참조하여 이를 수용하고 정확하게 설명하십시오. 그런 다음 이러한 통찰력을 사용하여 비선형 성장을 실현할 기회를 식별하십시오.관련 자료 : 시간이 지남에 따라 핵심 지표를 조정해야 할까요?단기 성장을 추적하면 장기적인 성공을 거둘 수 있습니다.월별 성장은 현재 성과를 정확하게 모델링하고 성공을 벤치마킹하고 예측하는 데 매우 유용합니다. 당신이 하고 있는 일을 알고 있고 회사의 장기적인 미래에 전념하고 있다는 거죠.성장률이 일정하거나 하향 조정되면 실망스러워 보일 수 있지만, 보고 싶은 데이터가 아닌 경우에도 모든 데이터에는 가치가 있다는 것을 기억하십시오. 기하 급수적인 성장은 하룻밤 사이에 일어나지 않으며 저절로 일어나지 않습니다.퀄리티 있는 데이터 산출은 퀄리티 있는 데이터 수집에서 시작됩니다.품질이 낮은 데이터를 지속적으로 살펴보면 MoM과 같은 중요한 지표를 정확하게 해석하기가 훨씬 어려워집니다. 분석을 실행하는 작업에 너무 깊이 빠져 들기 전에 먼저 강력한 데이터 시스템 인 MVI (Minimum Viable Instrumentation)를 만들어야 합니다.이를 통해 비즈니스 및 분석 목표를 달성하기 위해 따라야 하는 특정 데이터 프로세스를 식별할 수 있습니다.두 가지를 정의하여 시작하세요.일일 활성 사용자와 같은 중요한 용어에 대한 정의특정 비즈니스 목표고객이 이러한 목표 (예: 전환)를 달성하기 위한 올바른 방향으로 안내할 고객 여정의 경로를 신중하게 고려하여 측정하려는 이벤트를 정확히 찾아냅니다. 바로 추적하려는 터치 포인트입니다. 목표 달성에 중요한 것에 집중하고 나머지는 제거하십시오.다음은 팀의 심각한 데이터 유효성 검사 문제를 방지하기 위해 따라야 할 5 가지 주요 원칙입니다.모든 것을 추적하려 하지 마세요. 불필요한 데이터는 지저분하고 추적하기가 거의 불가능합니다. 대신 20 ~ 200개의 고객 주요 여정과 관련된 이벤트를 일관되게 추적하십시오.체계적으로 유지하십시오. 데이터와 이에 대한 정의는 팀원 모두에게 매우 깨끗하고 이해하기 쉬워야 합니다.d-1부터의 데이터를 정의하십시오. 데이터 구조를 설명하는 몇 가지 문서를 작성하는 것이 좋습니다.분석 플랫폼 내에서 사용자 식별이 작동하는 방식을 이해합니다. 또한 무의미하게 지속 방문하는 가짜 "새 사용자"를 방지하기 위해 장치 또는 기타 자격 증명으로 익명 사용자를 인식할 수 있는 시스템이 있어야 합니다. 예를 들어 Amplitude(앰플리튜드)는 "amplitude_ID"식별자로 이 문제를 해결합니다. 이 식별자는 익명인 경우에도 반복 방문 사용자를 포착합니다.숫자, 날짜, 국제 문자 및 지오 코딩 값과 같은 자동 서식 변수를 사용하여 일관성 있고 정확하게 분석하세요.콘텐츠 더 읽어보기마케터가 Amplitude를 사용해야 하는 10가지 이유그로스 마케팅이란? 뜻, 성공 사례, 필수 전략 총정리제품 성과지표 안내서

데이터 기반 UX 분석 개념과 방법 🎨
데이터 기반 UX 분석이란?User experience(UX) 분석은 데이터를 사용하여 사용자의 경험을 측정하고, 인사이트를 얻어 유저 경험을 개선하는 과정을 말합니다. 일반적으로 앱, 게임, 웹사이트, 소프트웨어 같은 종류의 제품에 적용되죠.UX 분석에 사용할 수 있는 데이터는 다양합니다. 앱이나 웹사이트에서 보내는 시간, 클릭하는 요소, 가장 많이 사용하는 기능, 구매한 내역 등 거의 대부분의 요소가 가능하죠. 심지어 '행동의 부재'도 분석 대상이 될 수 있는데요. 예를 들어 사용자가 장바구니에 담은 물건을 구매하지 않았거나, 링크 위에 커서를 올려놓았지만 클릭하지 않은 것도 UX분석의 대상이 될 수 있습니다.가계부 관리를 하고자 하는 사람 A가 있고, 우리는 가계부 앱을 서비스하는 기업이라고 가정해 봅시다. 우리는 A가 가계부 앱을 검색하고 우리 앱을 다운로드하고, 체험판에 가입하고, 은행 계좌나 신용카드와 같은 정보를 연동하기를 원할 것입니다. 그리고 체험판이 끝나면 유료 구독까지 전환되기를 희망하죠.이걸 '사용자 여정'이라고 부르며, 각 여정마다 사용자가 다음 여정으로 계속 진행할 수 있도록 좋은 사용자 경험을 제공해야 할 것입니다. 만약 여정을 완수하지 못하는 사용자가 있다면, UX 분석을 통해 어디서, 왜 이탈했는지 이해하고 궁극적으로 미래에 사용자 경험을 어떻게 개선할 수 있을지 힌트를 얻을 수 있습니다.UX 분석 대상구체적으로 어떤 데이터를 분석하고 지표를 측정할지는 제품이나 상황에 따라 천차만별입니다. 그렇기 때문에 이번 포스팅에선 비즈니스 의사결정까지도 활용할 수 있는 굵직한 주요 UX 데이터 지표를 중심으로 설명드리겠습니다. 해당 지표를 기반으로 어떤 최적화된 지표를 측정해볼 수 있을지 고민해보면 좋을 것 같습니다.응답 시간: 응답 시간은 페이지나 앱이 얼마나 빠르게 로딩되는지에 대한 지표입니다. 우리 생각보다 사용자들은 로드되는 시간을 오래 기다리지 않습니다. 몇 초만 버벅이면 바로 이탈하죠.신규 및 재방문자 수: 신규 및 재방문자 수는 얼마나 효과적으로 사용자를 유치(Acquisition)하고 유지(Retention)하는지에 대한 지표입니다. 신규 방문자 수가 증가하지 않는다면, 마케팅 전략을 다시 검토해야 하며, 재방문자 비율이 낮다면, 제품 경험을 검토해야 합니다. 재방문자 비율에 문제가 있는 경우에는 리텐션 분석을 더 깊게 수행하여 재방문한 사용자와 이탈한 사용자 간의 행동 차이를 확인하는 것이 좋습니다.세션 길이: 세션 길이는 사용자가 제품을 얼마나 오래 사용하는지를 측정하는 지표입니다. 세션 시간이 길수록 좋을 것 같지만, 제품에 따라 그렇지 않을 수도 있습니다. 만약 뉴스 앱이라면 긴 세션 시간은 사용자가 적극적으로 참여하고 있다는 긍정적인 신호일 가능성이 높죠. 반면, 현금 송금 앱이라면 긴 세션 시간은 사용자가 원하는 작업을 수행하는 데 어려움을 겪고 있다는 신호일 수 있습니다. 이처럼 세션 길이 지표는 제품의 특성에 따라 사용자 경험을 유연하게 판단해야 합니다.세션당 페이지 수: 세션당 페이지 수는 한 세션 동안 방문하는 총 페이지 수를 의미합니다. 세션 길이와 마찬가지로 많은 페이지를 방문하는 것이 좋을 수도 있고 나쁠 수도 있습니다. 사용자가 제품에 깊게 몰입하여 사용하는 것일 수도 있지만, 원하는 답을 찾지 못해 이리 저리 방황하는 것일 수도 있습니다. 만약 후자라면, 더 적은 클릭으로 원하는 답을 쉽게 찾을 수 있도록 개선해야 합니다.전환율: 고객 여정의 각 여정에서 상위 여정으로 넘어가는 비율을 전환율이라고 합니다. 만약 광고 단계에서 클릭률, 즉 전환율이 높지 않다면 메시지를 조정해야 하는 등의 방법을 사용해야 합니다. 사용자가 앱을 다운로드했지만 유료 고객으로 전환되지 않는다면, 온보딩 과정을 조정하여 전환율을 높일 수 있습니다. 전환율은 사용자의 행동을 분석하고 제품 개선 방안을 찾는 데 중요한 역할을 합니다.과제 성공률과 과제 수행 시간: 제품이 사용하기 쉬운지 여부를 가장 명확하게 보여주는 지표가 바로 과제 성공률과 과제 수행 시간입니다. 여기서 말하는 '과제'는 서비스의 주요 사용 목적이나 기능을 말하는데요. 배달 앱 사용자가 음식 주문을 하려하는 데, 주문 방법을 몰라 한참을 헤매거나 주문 과정 자체가 너무 오래 걸린다면, 인내심을 잃고 앱을 이탈할 것입니다. 해당 지표를 통해서, 제품의 핵심 과제에 집중하고, 이러한 과제를 완수하는 과정을 자연스럽고 직관적이며 간단하게 만들어야 합니다.사용자 정착률(Stickiness): 정착률은 일일 평균 사용자 수(DAU)를 월간 평균 사용자 수(MAU)로 나누어 측정합니다. 이 지표는 사용자가 평균적으로 한 달에 며칠 동안 제품을 사용하는지 보여줍니다. 매일 접속하긴 바라는 게임과 같은 비즈니스에 특히 유용합니다. 하지만 모든 비즈니스에 적합한 지표는 아닙니다. 가령 비행기 예매 앱같은 경우 사용자 정착률이 크게 의미 있진 않겠죠.내비게이션 vs 검색 비율: 사용자가 제품을 탐색하는 데 검색 창에 지나치게 의존한다면, 이는 제품 디자인이 직관적이지 않다는 신호일 수 있습니다. 사용자가 최소한의 클릭으로 원하는 것을 빠르게 찾을 수 있도록 다양한 레이아웃, 구조, 구성 방식을 실험해 보아야 합니다.기능 참여율: 기능 참여율은 기능이 얼마나 자주 사용되는지를, 제품을 열어본 사용자 수로 나누어 측정한 지표입니다. 기능 참여율과 리텐션 분석을 결합하면, 특정 기능을 사용하는 사용자가 유지될 가능성이 어떤지 확인할 수 있습니다. 중요한 기능이 거의 사용되지 않는다면, 해당 기능을 더 눈에 띄게 UI를 조정할 필요가 있을 수 있습니다. 사용자에게 해당 기능을 알려주는 알림이나 이메일을 보내는 방법도 고려할 수 있겠죠.고객 이탈률: 고객 이탈률은 [(월초 고객 수) - (월말에 남아 있는 고객 수)] / (월초 고객 수) 입니다. 예를 들어, 6월 초에 100명의 고객이 있었고 6월 말에 90명의 고객이 남았다면, 이탈률은 10%가 됩니다. 고객의 충성도와 이탈을 평가하고 필요한 개선을 도출하는 데 중요한 지표입니다.UX 디자인과 데이터 분석 간의 관계UX 디자인은 단순히 제품을 예쁘게 만드는 것이 아닙니다. 제품을 자연스럽게 사용할 수 있도록 설계하고, 사용자의 기대를 뛰어넘는 결과를 제공해 그 제품에 매력을 느끼게 만드는 것이 목적입니다. 이를 위해서는 예술적 감각뿐만 아니라, 과학적인 데이터 분석과 테스트 과정이 필수적입니다. 데이터를 사용해 인사이트를 얻고 이를 바탕으로 가설을 세운 후, UX 디자인 테스트를 통해 이 가설을 증명해야 합니다.예를 들어, 운동화 회사의 제품 관리자가 재구매율이 낮다는 사실을 발견했다고 가정해 봅시다. 데이터에 따르면 대부분의 고객은 10개월마다 신발을 구매합니다. 관리자는 고객이 10개월 후에 자동 리마인더를 받으면 재구매율이 높아질 것이라고 가정합니다.이후 제품 팀은 마케팅 팀과 협력하여 이메일과 같은 메시지를 다양한 고객 그룹에 대해 A/B 테스트하여 재구매율을 높일 수 있는지 실험할 수 있습니다.UX 분석 대시보드 만들기UX 분석과 개선 과정에는 조직 전체의 의사 결정이 필요한 경우가 많습니다. 때문에 조직 내에서 원활한 정보 공유와 통일된 접근 방식이 필요합니다. 이때 필요한 것이 분석 대시보드입니다.좋은 UX 분석 대시보드는 중요한 지표들을 맨 위에 배치합니다. 일일 대시보드에는 세 가지 또는 네 가지 이상의 지표가 포함되지 않도록 하여, 대시보드 확인이 복잡하지 않도록 해야 합니다. 또한 지표는 비즈니스 목표와 직접 연결되어야 하며, 대시보드의 첫 번째 항목을 보면 비즈니스의 상태를 간략하게 확인할 수 있어야 합니다. 그 아래에는 대시보드에 다양한 시간대를 포함시켜, 즉각적으로 해결해야 할 문제와 중장기적인 데이터의 추세를 구분할 수 있는 것이 좋습니다.마치며사용자 경험은 제품 성공 또는 실패에 중요한 역할을 합니다. 사용자가 제품에 대해 느끼는 것을 파악하는 일은 데이터 분석가뿐만 아니라 조직 전체에서 이루어져야 합니다. 조직 내 모든 사람들이 해당 데이터를 활용해 사용자 행동에 대한 질문에 신속하게 답할 수 있어야 합니다. UX 분석과 대시보드의 적절한 활용은 비즈니스 성장과 제품 개선에 크게 기여할 수 있습니다. 대표적으로 Amplitude와 같은 솔루션을 이용한다면, 이런 데이터를 손 쉽게 측정하고 관리하고, 또 대시보드를 구성할 수 있습니다. UX 데이터 분석에 대해서 더 깊은 인사이트를 얻고 싶다면 맥소노미 홈페이지에 올라온 다양한 가이드북을 확인해보세요.콘텐츠 더 읽어보기리텐션 최적화 디자인 설계[세션 스케치 | 올리브영] 행동 데이터로 고객을 보다, '올리브영의 데이터 리터러시 향상부터 서비스 개선까지'Canvas Flow로 고객이 만족하는 여정 설계하기