앰플리튜드
MoM(월별 성장률) 분석시 저지르는 일반적 3가지 실수
Team MAXONOMY ・ 2021.03.29

월별 성장이란 무엇입니까?
월별 (MoM) 성장은 특정 메트릭 값의 변화를 전월 값의 백분율로 표시합니다.
월별 성장은 월별 수익, 활성 사용자, 구독 수 또는 기타 주요 지표의 성장률을 측정하는 데 자주 사용됩니다. 모바일 앱, SaaS 제품 또는 웹 사이트와 같은 디지털 제품을 작업하는 경우 MoM 활성 사용자 증가에 관심이 있을 것입니다. 이는 제품 또는 회사의 성장과 성공에 대해 이야기하는 가장 일반적인 방법입니다.
MoM 성장률을 계산하는 방법
한 달 동안의 월별 성장을 계산하려면 이번 달의 총 사용자 수와 지난 달의지난달의 총 사용자 수의 차이를 취한 다음 이를 지난달의 합계로 나누면 됩니다.
동일한 공식을 사용하여 주별 성장 또는 전년 대비 성장을 계산할 수 있습니다. 한 달 동안의 성장률을 계산하는 대신 6개월 동안의 MoM 성장률을 계산하고 싶다고 가정 해 보겠습니다. CMGR (월간 복합 성장률) 을 계산하려는 경우입니다.
관련 자료 : 활성 사용자는 누구입니까? 사용자 분석을 위한 전략
Compound Monthly Growth Rate (CMGR) 공식
CMGR은 해당 기간 동안 매달 일정한 속도로 성장한다고 가정하여 특정 기간 동안의 성장률을 설명합니다. 활성 사용자가 다음과 같이 증가했다고 상상해보세요.

CMGR을 계산하려면 위의 숫자를 다음 공식에 대입합니다.

예를 들면 다음과 같습니다.

CMGR은 월별마다 다르지만 위의 전체 기간 동안 20%입니다. 예를 들어 1월부터 2월까지의 MoM 성장률은 10%에 불과한 다음 2월부터 3 월은 36%로 점프합니다. CMGR을 사용하면 1월부터 6월까지 매달 일정한 성장률로 성장하고 있다고 가정합니다. 이 예에서 이는 다음을 의미합니다.

이제 다음 단계로 넘어갑시다.위에서 과거 기간 동안 CMGR을 계산했습니다. 5개년 사업 계획을 세우고 사업이 어떤 모습 일지에 대한 프로젝트를 계획한다고 가정해 보겠습니다. 이대로라면 2022년 12월까지 활성 사용자 수는 5십만 명을 넘을 것입니다.

피해야 할 MoM 성장과 관련된 3가지 일반적인 실수
성장 모델을 구축할 때 부주의한 실수를 하는 것은 생각보다 흔합니다. 다음은 MoM 데이터 작성 시, 저지르는 3가지 일반적 실수입니다.
1. MoM 성장으로 모델링 된 작은 절댓값
앱이나 제품의 사용자 수가 적으면, MoM 달성을 훨씬 쉽게 이룰 수 있습니다. 즉, 적은 수의 MoM 성장에 대한 내러티브를 구성하는 것이 더 쉽고 비즈니스가 성장함에 따라 그 비율을 유지하기가 더 어렵습니다.

이 예에서는 2018년 1월부터 2018년 6월까지 매월 20% 의 성장을 경험하고 있습니다. 하지만 절대 수치로 보면 100명의 활성 사용자에서 249명의 활성 사용자로만 증가하는 것입니다. 여기서 문제는 이 비율 증가가 확장되지 않는다는 것입니다. 한 번의 언론 멘션으로 100 명에서 120 명의 월간 활성 사용자 확보는 쉽게 할 수 있습니다. 그러나 한 달에 활성 사용자가 1,000,000명에서 1,200,000명으로 20 % 증가하려면 강력한 성장 엔진이 필요합니다.
핵심 요점 : 사용자 수가 적을 때엔 MoM을 주시할 수 있지만 사용자 수가 더 많아지면 참여도 지표 , stickness 및 사용자 행동 데이터를 살펴봄으로써 성장이 장기적으로 지속될 것인지를 알려주는 기본 메커니즘 구성에 집중해야 합니다.
2. MoM 성장으로 모델링 된 비일관된 성장
성장은 예측할 수 없습니다. 한 달은 MAU를 두 배로 늘리고 다음 달에는 변화 없이 그대로 유지될 수 있습니다. 이런 일이 발생한다면 일관된 CMGR로 모델링하여 변동하는 성장을 모순되게 만드는 것은 실수입니다.

여기에서 CMGR이 20% 이지만 특정 기간 동안 (5월부터 6월까지)만 20% 근처에 있다고 가정해 봅시다. 그 외에는 2% 성장과 82% 성장 사이에서 크게 변동하고 있습니다. 결론은 다음 달 성장률이 얼마인지 알지 못한다는 것입니다. 성장률은 도처에 있지만 데이터는 여전히 무언가를 알려줍니다. 앱을 위한 일관된 성장 엔진을 구축하지 않았던 거죠.성장이 있는 달과 성장이 없는 달의 차이를 모를 가능성이 높습니다.
핵심 요점 : 성장이 일관되지 않은 경우, 단일 CMGR보다는 월별 성장률의 추세로 성장을 논의하는 것이 더 정확합니다.
3. MoM 성장으로 모델링 된 선형 성장
귀하의 비즈니스는 성장하고 있으며 지속적으로 성장하고 있습니다. 다만 선형 성장을 기하급수적인 성장으로 착각하지 마십시오.

6개월 동안 사용자가 10,000 명에서 20,000 명으로 두 배 증가했다고 가정해 보겠습니다. 이는 15%의 Mom 성장률을 의미합니다. 자세히 살펴보면 문제가 나타납니다. 시간이 갈수록 성장률은 둔화되는 것 같습니다. 숫자가 커짐에 따라 성장이 감소하는 것은 성장이 기하급수적이지 않다는 신호이며 아마도 더 선형적일 것입니다. 여기서는 15% MoM이 성장하고 있다고 말하는 대신 매월 2,000명의 활성 사용자를 추가한다고 말함으로써 절댓값을 고수하는 것이 더 정확합니다.
핵심 사항 : 모든 성장이 동일하지는 않습니다. 성장이 선형으로 발생하는 경우 절대 사용자 수의 월별 성장을 참조하여 이를 수용하고 정확하게 설명하십시오. 그런 다음 이러한 통찰력을 사용하여 비선형 성장을 실현할 기회를 식별하십시오.
관련 자료 : 시간이 지남에 따라 핵심 지표를 조정해야 할까요?
단기 성장을 추적하면 장기적인 성공을 거둘 수 있습니다.
월별 성장은 현재 성과를 정확하게 모델링하고 성공을 벤치마킹하고 예측하는 데 매우 유용합니다. 당신이 하고 있는 일을 알고 있고 회사의 장기적인 미래에 전념하고 있다는 거죠.
성장률이 일정하거나 하향 조정되면 실망스러워 보일 수 있지만, 보고 싶은 데이터가 아닌 경우에도 모든 데이터에는 가치가 있다는 것을 기억하십시오. 기하 급수적인 성장은 하룻밤 사이에 일어나지 않으며 저절로 일어나지 않습니다.
퀄리티 있는 데이터 산출은 퀄리티 있는 데이터 수집에서 시작됩니다.
품질이 낮은 데이터를 지속적으로 살펴보면 MoM과 같은 중요한 지표를 정확하게 해석하기가 훨씬 어려워집니다. 분석을 실행하는 작업에 너무 깊이 빠져 들기 전에 먼저 강력한 데이터 시스템 인 MVI (Minimum Viable Instrumentation)를 만들어야 합니다.이를 통해 비즈니스 및 분석 목표를 달성하기 위해 따라야 하는 특정 데이터 프로세스를 식별할 수 있습니다.
두 가지를 정의하여 시작하세요.
- 일일 활성 사용자와 같은 중요한 용어에 대한 정의
- 특정 비즈니스 목표
고객이 이러한 목표 (예: 전환)를 달성하기 위한 올바른 방향으로 안내할 고객 여정의 경로를 신중하게 고려하여 측정하려는 이벤트를 정확히 찾아냅니다. 바로 추적하려는 터치 포인트입니다. 목표 달성에 중요한 것에 집중하고 나머지는 제거하십시오.
다음은 팀의 심각한 데이터 유효성 검사 문제를 방지하기 위해 따라야 할 5 가지 주요 원칙입니다.
- 모든 것을 추적하려 하지 마세요. 불필요한 데이터는 지저분하고 추적하기가 거의 불가능합니다. 대신 20 ~ 200개의 고객 주요 여정과 관련된 이벤트를 일관되게 추적하십시오.
- 체계적으로 유지하십시오. 데이터와 이에 대한 정의는 팀원 모두에게 매우 깨끗하고 이해하기 쉬워야 합니다.
- d-1부터의 데이터를 정의하십시오. 데이터 구조를 설명하는 몇 가지 문서를 작성하는 것이 좋습니다.
- 분석 플랫폼 내에서 사용자 식별이 작동하는 방식을 이해합니다. 또한 무의미하게 지속 방문하는 가짜 "새 사용자"를 방지하기 위해 장치 또는 기타 자격 증명으로 익명 사용자를 인식할 수 있는 시스템이 있어야 합니다. 예를 들어 Amplitude(앰플리튜드)는 "amplitude_ID"식별자로 이 문제를 해결합니다. 이 식별자는 익명인 경우에도 반복 방문 사용자를 포착합니다.
- 숫자, 날짜, 국제 문자 및 지오 코딩 값과 같은 자동 서식 변수를 사용하여 일관성 있고 정확하게 분석하세요.
콘텐츠 더 읽어보기

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기
Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법
개발 리소스 없이 클릭·페이지뷰 등 사용자 행동을 자동 수집해 빠른 분석과 최적화를 지원하는 Amplitude Autocapture 기능 소개
마케팅 퍼널(Funnel) 의미와 분석 방법🔍
퍼널 분석(Funnel Analysis)이란?퍼널 분석(Funnel Analysis)이란, 전환 지점에 이르기까지의 일련의 이벤트를 분석하는 방법을 말합니다. 제품, 웹사이트, 이메일 등 모든 종류의 디지털 접점에서 퍼널 분석을 할 수 있습니다. 퍼널 분석의 목적은 고객여정에서 중요한 이벤트를 정확히 파악하여, 테스트를 수행하고 사용자 경험을 개선하며 전환율을 높이는 것입니다.예를 들어, 이메일을 통해 무료 체험 이벤트를 홍보하고 무료 체험 사용자들이 최종적으로 유로 전환을 하길 원하는 캠페인이라면, 그 퍼널을 다음과 같이 구성될 것입니다.1단계: 잠재 고객이 이메일을 열고 무료 체험 제안을 발견2단계: 무료 체험을 신청하기 위해 CTA 버튼을 클릭3단계: 계정을 만들고 제품을 무료로 사용4단계: 무료 체험 기간이 종료된 후 잠재 고객이 유료 고객으로 전환퍼널 분석이 필요한 이유퍼널 분석은 왜 필요할까요? 광고에 혹해서 링크를 클릭하였는데 회원가입 절차가 복잡해서 사용을 종료한 경험, 괜찮아 보이는 앱을 설치했는데 구성이 복잡해서 금방 삭제한 경험, 한 번씩은 있을 것입니다. 고객이나 사용자가 디지털 경로를 따라가면서 원하는 결과에 도달하지 못하는 것은 굉장히 흔한 일입니다.이를 해결하기 위해 아무리 고객의 경험을 이해하려 해보아도 분명히 한계가 있습니다. 이때 퍼널 분석을 통해 각 단계를 통계적으로 들여다봄으로써 이러한 사용자의 마찰 지점을 효과적으로 개선할 수 있는 것입니다. 퍼널의 각 단계 사이에는 여러 가지 방해 요소나 장애물이 발생할 수 있으며, 무엇이 효과가 있고 무엇이 그렇지 않은지를 알려줄 수 있는 행동 패턴이 존재할 가능성이 큽니다.앞서 살펴본 예시에서 유독 3단계에서 이탈이 많다면, 그 원인이 무엇인지 행동 패턴에서 찾아볼 수 있을 것입니다. 가령 모바일 환경에서 회원가입 로딩 속도가 유독 느려 사용자가 회원가입을 쉽게 포기하기 때문일 수 있죠. 이런 경우 PC 사용자의 퍼널과 모바일 사용자의 퍼널을 비교하여 사실 여부를 쉽게 확인할 수 있을 것입니다. 이 문제를 개선하여 모바일 전환율이 PC 전환율만큼 높아진다면, 얼마나 많은 수익을 기대할 수 있을지 예상하고, 모바일 환경을 개선하는 투자 비용 대비 효과를 비교할 수 있을 것입니다. 즉, 우리가 늘 강조하는 데이터 기반의 의사결정을 수행하고 전환율을 개선할 수 있는 것입니다.정리하자면, 퍼널 분석은 다음과 같은 목적으로 사용할 수 있습니다:전환율 개선: 퍼널 분석을 통해 사용자가 최종 목적지에 도달하지 못하게 하는 요인을 파악하여, 해결책을 수립하고 전환율을 개선할 수 있습니다. 여기서 최종 목적지는 "가입" 버튼을 클릭하거나 PDF 다운로드 등 상황에 맞춰 다양하게 설정할 수 있습니다.퍼널 간소화: 웹사이트, 모바일 앱, 이메일, 대시보드 등 다양한 디지털 접점에서 퍼널을 만들 수 있을 것이고 이를 합치면 전체적인 고객 여정이 됩니다. 퍼널 분석은 이러한 각 여정이 서로 어떻게 연결되는지를 전체적인 관점에서 살펴보고 필요없거나 중복되는 부분을 찾아 간소화 할 수 있습니다.유입과 리텐션의 통합 : 보통 마케팅 팀은 신규 고객을 유입하는 데 집중하는 반면, 제품 팀은 그 고객을 유지하는 데 중점을 둡니다. 퍼널 분석은 두 팀이 데이터를 공유하고 인사이트를 교류할 수 있는 기회를 제공합니다.퍼널 분석 4가지 방법퍼널 데이터를 해석하고 활용하는 방식을 비즈니스와 산업에 따라 달라지지만, 대표적으로 다음 4가지의 방법이 있습니다.전환 분석퍼널을 분석하는 가장 기본적인 방법입니다. 각 단계에서 전환한 사용자의 수를 측정합니다. 주로 막대 그래프로 시각화하여 표현하죠. 전환 분석 방식의 핵심은 문제가 발생하였을 때 이를 빠르게 확인하고 조치를 취하는 것입니다. 퍼널의 한 단계에서 사용자 이탈이 갑자기 심해진다면, 그 부분을 빠르게 점검해야 합니다.기간에 따른 전환 분석기간에 따른 전환 분석은 특정 날짜에 퍼널에 진입한 사용자의 전환율을 확인하는 분석법입니다. 사용자가 퍼널을 완료하지 않아도 분석 대상에 계속 포함하는 것이지요. 휴일이나 특별 이벤트 동안 퍼널이 어떻게 자동하는지 이해하는 데 유용합니다. 전환 시간 분석각 사용자가 각 단계를 클릭하는 데 얼마나 시간이 걸리는지는 파악하여, 퍼널이 건강하게 작동하고 있는지 확인할 수 있습니다. 적절한 전환 시간은 비즈니스에 따라 다르기 때문에, 적절한 기준을 세우고 과거 데이터를 비교하여 설정할 필요가 있습니다. 가령, 패스트푸드 배달 앱과 세금 관련 서비스 앱의 기대되는 전환 시간은 완전히 다를 것입니다. 빈도 분석사용자가 퍼널의 다음 단계로 이동하기 전에 특정 행동을 몇 번이나 수행하는지 측정하는 분석 방법입니다. 빈도를 측정함으로써 사용자가 해당 퍼널 내에서 무엇을 얼마나 자주 하는지 파악할 수 있습니다. 가령, 장바구니 물건을 결제하기 전에 이 물건이 최저가가 맞는지 확인하기 위해 검색창에 들어가는 행동을 많이 보인다면, 장바구니 안에서 해당 물품이 최저가임을 나타내주는 메시지를 표시하여, 사용자가 더 간편하게 쇼핑 여정을 마칠 수 있도록 유도할 수 있을 것입니다.이 외에도 비즈니스나 상황에 최적화된 독특한 관점으로 접근하여 퍼널 분석을 진행할 수 있습니다. 위의 기본적인 퍼널 분석 방법에 익숙해진다면, 더 창의적인 방법으로 문제를 해결해보세요.퍼널 분석 도구퍼널 분석을 위해선 관련된 도구가 필수로 필요합니다. 대표적인 퍼널 분석 도구인 Amplitude는 단순 페이지 뷰나 세션뿐만 아니라 모든 종류의 이벤트나 사용자 행동을 측정하고 추적할 수 있습니다. 퍼널 이벤트의 순서를 지정하고 행동 코호트를 세분화하며, 특정 전환 기간을 설정할 수도 있죠.다음은 퍼널 분석 도구를 선택할 때, 필수로 체크해야하는 요소입니다고객 여정 전반에 걸쳐 사용자 행동을 시각화하고, 측정하며, 이해할 수 있어야 합니다. 이때 사용자를 코호트로 분류하여 확인할 수 있는 것이 좋습니다.퍼널 상에서 문제점이 발생했을 때, 이를 빠르게 감지하고 알림을 보낼 수 있어야 합니다.제품 개선, 개인화, 원활한 고객 여정 구축를 위한 추가적인 데이터 연계가 가능해야 합니다.콘텐츠 더 읽어보기전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)퍼널(Funnel) 분석과 사용 사례구매 전환율을 높이는 6가지 전략
Amplitude 2025년 2월 신규 기능 업데이트 훑어보기
Amplitude의 새로운 2월 업데이트 기능 살펴보기
A/B테스트 개념과 데이터 분석 방법🔍
A/B 테스트는 두 가지 혹은 그 이상의 서로 다른 버전(Variant)을 비교하여 어느 쪽이 더 나은 성과를 내는지 판단하는 실험 기법입니다.





