앰플리튜드
마케터가 Amplitude를 사용해야 하는 10가지 이유
Team MAXONOMY ・ 2024.10.22

Amplitude를 통해 마케터가 할 수 있는 것을 무엇이 있을까요? 요즘 마케터에게 Amplitude와 같은 툴이 필수라는 말을 많이 들었지만, 막상 구체적으로 어떤 것들을 할 수 있는지 모르는 경우가 많습니다.
Amplitude를 사용하면 가장 기본적으로 전체 디지털 고객 여정을 이해하고, 그 인사이트를 바탕으로 여러가지 전략을 실행할 수 있습니다. A/B 테스트를 실행하거나, 더 높은 수준의 개인화를 실행하고, 회사의 다른 팀들과 데이터 기반으로 협업할 수있죠. 이를 통해 고객 획득 비용을 절감하고, 리텐션을 개선하고, 마케팅 ROI 향상하는 등 데이터 기반의 그로스를 가속화하여 더 나은 비즈니스 성과를 낼 수 있습니다.
오늘 포스팅에서는 이런 이점을 중심으로 마케터가 Amplitude를 사용해야 하는 10가지 이유를 살펴보도록 하겠습니다.
1. 전체적인 마케팅 현황을 파악
Amplitude를 사용한다면, 어떤 마케팅 효과가 있는지, 고객은 어떻게 생각하고 행동하는지 등 다양한 데이터를 파악할 수 있습니다. 뿐만 아니라 이런 정량적인 데이터 외에 정성적인 데이터도 확인 할 수 있는데요. Session Replay 기능을 통해 고객별 혹은 세그먼트나 코호트별로 고객의 실질적인 행동과 인사이트를 실시간으로 체크할 수 있습니다. 이를 통해 디지털 경험을 재구성하고, 고객 경험을 개선할 수 있죠.
글로벌 기업 A는 Amplitude Session Replay 기능을 활용하여 유독 특정 지역 시장에서 낮은 전환율을 보인다는 것을 파악했습니다. 그 원인을 '문화적인 차이'라고 가설을 세우고 해당 지역 문화에 더 잘 맞는 타겟 문구를 구성하였습니다. 해당 문구가 정말 효과적인지 확인하기 위해 A/B테스트도 진행하였죠. 그 결과, 개선된 문구는 CTA 클릭률이 두 배로 증가하였으며, 전환율이 20% 향상되었습니다.
2. 최적의 마케팅 채널 선택과 캠페인 최적화
마케팅 예산은 언제나 제한적이죠. 때문에 어떤 마케팅 채널이, 어떤 캠페인이 효과가 좋은지 아는 것은 중요합니다. 많은 Amplitude 이용자들이 Amplitude의 가장 큰 이점으로 '다양한 마케팅 채널의 결과를 추적할 수 있다는 점'을 꼽습니다. Amplitude의 웹 분석 기능은 채널, 캠페인, 페이지 및 전환 성과에 대한 즉각적인 데이터를 제공합니다. 이러한 데이터는 사용자 가입, 구매, 무료 체험 전환과 같이 세부적인 마케팅 목표와 연결하여 분석할 수 있습니다.
3. 개인화 확장
Amplitude는 마케터가 적절한 사람에게 적절한 메시지를 적절한 시점에 전달하여 디지털 경험을 최적화할 수 있도록 돕습니다. 이를 통해 고객이 가장 많이 사용하는 채널과 플랫폼에서 메시지를 전달하고, 그 결과를 측정할 수 있습니다. 가입, 업그레이드, 구매, 리텐션 등 거의 모든 요소로 가능하죠.
Salesforce Connected Customer 보고서에 따르면, 고객의 88%는 회사가 제공하는 경험이 제품이나 서비스만큼 중요하다고 말하며, 73%는 회사가 자신의 독특한 요구와 기대를 이해하기를 원한다고 응답했습니가
Amplitude의 '데모 비디오'기능을 활용하면, 다시 돌아왔으면 하는 이탈 고객에 대한 데이터를 제공합니다. 이들에 대한 데이터를 바탕으로 고객 그룹을 Facebook, TikTok, Braze와 같은 외부 마케팅 플랫폼이나 마케팅 채널에 연동하여 활성화할 수 있습니다. 이 과정을 단 몇 번의 클릭만으로 완료할 수 있죠.
4. CRM 연동과 빠른 A/B 테스트 실행
개인화된 경험을 만들기 위해 A/B 테스트는 이제 필수가 되었는데요. A/B테스트를 통해 어떤 메시지가 반응이 좋은지, 어떤 CTA(콜 투 액션)가 원하는 고객 행동을 유도하는지, 어떤 랜딩 페이지가 전환율을 높이는지 알 수 있습니다. 이런 A/B 테스트 도구가 제품 분석 시스템과 연동되지 않으면 웹 성능이 느려지고, 개발자와 협업하는 과정에서 굉장히 큰 시간이 낭비될뿐만 아니라 라이선스 비용과 유지 관리 비용도 증가합니다.
Amplitude는 Braze와 같은 CRM과 높은 연동성을 가지고 있어 빠르게 테스트를 실행하고 그 결과를 분석할 수 있습니다.
5. CAC(고객 획득 비용) 절감
현재 많은 기업의 마케팅 조직이 예산이 동결된 상황에서 채널 비용이 상승하고 있는 문제에 직면하고 있습니다. 이런 상황에서는 고객 획득 비용(CAC)을 낮추는 것이 무엇보다 중요한데요. Amplitude를 사용해 가장 가치 있고 전환 가능성이 높은 고객 세그먼트를 찾아, 그 인사이트를 활용해 메시지와 제안을 개인화하고, 이 세그먼트를 채널과 플랫폼에 연동하여 더 효과적인 캠페인을 진행할 수 있습니다.
6. 수익 분석
고객획득과 리텐션의 중요성은 많이 알려져있는 데 반해, 이것을 최종적으로 수익으로 전환하는 '수익화'는 상대적으로 덜 알려져있습니다. 하지만 수익화는 어쩌면 가장 중요한 관리 대상이며, Amplitude를 사용한다면 디지털 경험이 수익에 어떻게 기여하는지를 이해하고 개선하고 있습니다.
한 글로벌 기업은 Amplitude를 사용해 수익을 10% 증가시켰습니다. 이 기업은 판매 퍼널에서 마찰을 유발하는 요소를 파악하고 수정하였으며, 오류를 겪고 있는 사용자를 추적하고, 영향을 받은 사용자 세그먼트를 생성했습니다. 그런 다음, 해당 세그먼트를 소셜 미디어 마케팅 및 CRM 캠페인과 같은 유료 도구에 연동하여 사용자들이 사이트로 다시 돌아오도록 유도했고, 그 결과 판매 퍼널 완료율이 15% 증가했습니다.
7. 리텐션 분석
기존 고객을 오래동안 유지하는 것을 사업 성장과 수익 창출의 굉장히 핵심적인 요소입니다. 성공적으로 성장하는 기업의 대부분은 기존 고객에서 수익을 창출하며, 총 수익의 80%가 기존 고객에게서 발생한다고 합니다. 리텐션 분석을 Amplitude의 가장 대표적인 분석 기능이며, 다양한 산업군에 맞는 차트를 다양한 기준과 방식으로 설정할 수 있습니다.
8. 조직 내 원활한 협업
디지털 경험은 고객이 제품을 선택하고 충성도 높은 고객이 될지 여부를 결정하는 중요한 요소입니다. 고객은 기업에 제품 팀, 개발 팀, 마케팅 팀 등 어떤 부서가 있는지 관심이 없습니다. 단지 처음부터 끝까지 좋은 경험을 원할 뿐이죠.
회사내 팀 간의 장벽을 허무는 일은 쉽지 않지만, Amplitude를 사용하여 통합된 인사이트를 공유하고 협업 도구를 잘 활용한다면, 조금씩 그 장벽을 허물 수 있을지 모릅니다.
9. 높은 기술 연계성
Amplitude는 코드 없이 연결할 수 있는 개방형 플랫폼을 제공하여 필요한 모든 데이터를 쉽게 가져오고 내보낼 수 있으면서도 데이터 프라이버시와 보안을 보호합니다.
Amplitude는 선호하는 기술 스택과 원활하게 연결되어 마케팅 팀이 더 효과적이고 데이터 기반의 캠페인과 프로그램을 실행할 수 있도록 하여 마케팅 기술 투자에서 최대의 가치를 얻을 수 있도록 돕습니다. Amplitude에서 데이터를 활용하여 프로젝트와 포트폴리오 전반에 걸쳐 다양한 코호트를 구축하여 사용자와 계정을 세분화하고 이러한 코호트를 통해 기술 스택의 하위 시스템에 연결된 디지털 프로그램을 위한 맞춤형 청중을 구축할 수 있으며, 이를 통해 사용자를 대상으로 한 맞춤 메시지를 발송할 수 있습니다.
10. 새로운 기회 발굴
비즈니스에서는 종종 잘못된 전략을 추구하는 리스크를 줄이려 합니다. 그리고 데이터를 통해 의사 결정을 내리는 것은 불확실성을 줄이는 한 가지 방법입니다. 하지만 데이터를 리스크를 받아들이고 대담한 도전을 시도하는 방법으로 생각해본다면 어떨까요? 성장과 고객 참여를 촉진하기 위한 새로운, 큰 아이디어를 실험해보는 것이죠.
한 글로벌 기업은 성장이 정체된 상황을 극복하기 위해 Amplitude에서 얻은 인사이트를 바탕으로 틱톡 캠페인을 기획했고, 이 캠페인이 바이럴되면서 앱을 시장 리더로 자리매김할 수 있게 했습니다. 이러한 대담한 도전이 성공할 수 있었던 이유는, 이미 데이터 투명성과 캠페인에 대한 공동 소유권에 투자했기 때문입니다.
마치며
마케터로서 Amplitude를 사용하는 방법을 무궁무진합니다. 대형 캠페인을 런칭할 때마다 트래픽이 어디에서 오는지, 그리고 그것이 리드, 가입, 혹은 기능 채택으로 어떻게 전환되는지를 보여주는 대시보드를 만들 수도 있습니다. 소셜 미디어에서 가장 많은 트래픽을 유도한 캠페인이나 포스팅을 선별할 수도 있죠. 캠페인 결과를 리뷰하면서 잘된 부분과 다음에 개선할 부분을 정렬하고 링크 하나를 통해서 누구든지 동일한 데이터를 볼 수 있도록 할 수 있습니다.
회사의 규모나 산업에 관계없이, 그리고 어떤 유형의 마케터인지에 상관없이, 더 나은 데이터 기반 결정을 내리고 싶다면, Amplitude는 필수적입니다. Amplitude를 통해 디지털 고객 여정 전체를 이해하고 그 인사이트를 바탕으로 행동하여, 고객이 계속해서 돌아오게 만드는 더 나은 비즈니스 결과를 얻어보세요.

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기

모바일 게임 리텐션(Retention) 바로알기 🎮
모바일 게임의 성과를 측정할 때 가장 중요한 지표는 아마 리텐션일 것입니다. 리텐션을 측정하는 기본적인 방식은 어느 서비스나 동일하지만, 서비스나 산업에 따라 그 특성에 맞는 상세한 리텐션 설정 기준과 측정 방법이 존재합니다. 모바일 게임 서비스도 마찬가지로 게임이라는 특성에 맞는 적합한 리텐션율 측정법이 있습니다.리텐션율은 크게 'N-day 리텐션율', 'Unbounded 리텐션율', 'Bracketed 리텐션율' 3가지로 나뉩니다. 이중 모바일 게임에 가장 많이 적용하는 지표는 N-day 리텐션율입니다. 이유가 무엇일까요? 이번 포스트에서는 모바일 게임에 적합한 리텐션 설정 방법과 그 이유에 대해서 알아보겠습니다.N-day 리텐션 vs Unbounded 리텐션N-day 리텐션은 사용자가 처음 앱을 사용한 이후, 지정된 날에 앱으로 돌아오는 비율을 말합니다. 예를 들어, 2일차 N-day 리텐션율이 50%라면, 새로운 유저의 50%가 2일차에도 앱을 실행했다는 것을 의미합니다. 반면, Unbounded 리텐션은 특정한 날짜에 앱으로 돌아오는 사용자의 비율이나 이후의 임의의 날짜를 측정합니다. 만약 2일차 Unbounded 리텐션율이 50%라면, 새로운 사용자의 50%가 2일차를 포함한 그 이후에 한번이라도 앱을 사용했다는 것을 뜻합니다.아래는 동일한 모바일 애플리케이션에 대한 N-day 리텐션과 Unbounded 리텐션(Rolling Retention)을 비교한 그래프입니다.그래프를 보시면 알겠지만, 두 지표 간의 차이는 상당히 큽니다. 이 사실을 모른채로 아무 리텐션 지표를 모니터링한다면, 중요한 비즈니스 의사결정에 큰 오류가 생길 수 있겠죠.Day 1을 기준으로 보면 N-day 리텐션은 43%로, 신규 유저 중 43%가 앱을 처음 사용한 후 첫 번째 날에 앱을 실행했다는 것을 의미합니다. 반면, Unbouded 리텐션은 59%로, 이는 새로운 사용자 중 59%가 Day1을 포함하여 그 이후의 어느 날이든 한번 이상 앱을 실행했다는 것을 의미합니다.N-day 리텐션을 사용하면, 앱을 가장 처음 실행한 이후 N일이 지난 시점까지 앱으로 얼마나 많은 사용자가 돌아오는지 정확한 비율을 알 수 있습니다. 따라서 모바일 게임같이 유저가 매일 플레이하는 것이 목표인 애플리케이션은 N-day 리텐션이 적합하다고 할 수 있죠.물론 N-day 리텐션이 항상 정답은 아닙니다. 어떤 케이스에서는 매일은 아니더라도 조금 긴 텀을 가지고 사용자가 돌아오는 것이 유의미할 수 있습니다. 대표적으로 모바일 임대료 결제 앱이라면, 사용자가 매월 한 번씩만 앱을 사용하여 결제를 하는 것이 앱 성공의 기준이 될 수 있겠죠. 이 경우에는 N-day 리텐션보다는 Unbouded 리텐션을 측정하는 것이 유용할 것입니다. 흔한 케이스는 아니겠지만, 특정 게임도 Unbouded 리텐션을 사용하는 것이 적합할 수 있습니다. 예를 들어 '텐텐 오락실'이라는 앱은 술자리나 많은 사람들이 모인 자리에서 다 함께 플레이하는 모바일 게임입니다. 이런 류의 게임의 경우, 유저가 매일 습관적으로 접속하길 기대하지 않겠죠.시간 기준 리텐션 VS 날짜 기준 리텐션N-day 리텐션과 Unbounded 리텐션 차이 외에도, 시간 기준과 날짜 기준으로 리텐션 계산 방법을 나눌 수도 있습습니다. 시간 기준으로 계산한다면, 각 사용자별 접속 시간을 기준으로 날짜를 구별합니다. 즉, Day 0는 사용자가 앱을 최초로 실행시킨 시간부터 24시간이 지난 시간인 0 ~ 24시간 사이를 의미하고, Day 1은 24시간부터 48시간 사이를 의미합니다. Day 1 리텐션율이 10%라고 가정해본다면, 1,000명의 사용자 중에서 100명이 각각의 처음으로 앱을 실행한 이후 24시간에서 48시간 사이에 앱을 한번 이상 더 실행했다는 것을 뜻합니다. 만약 사용자 X가 화요일 오후 4시에 처음으로 앱을 실행했다면, 수요일 오후 4시와 목요일 오후 4시 사이에 앱을 다시 열었다는 뜻입니다.반면, 날짜를 기준으로 계산할 때, 리텐션 차트는 그저 달력상의 날짜를 기준으로 측정됩니다. 만약 어떤 사용자가 10월 1일 오후 11시에 처음으로 앱을 실행했다면, 이 사람의 Day 0는 10월1일, Day 1는 10월 2일이 될 것입니다.아래 그래프는 앞서 살펴본 동일한 앱에 대한 시간 기준 리텐션과 날짜 기준 리텐션 수치입니다.처음 며칠 동안에 가장 뚜렷한 차이가 나타난다는 것을 알 수 있습니다. 날짜 기준 Day 1 리텐션은 43%인 반면, 시간 기준 Day 1 리텐션은 32%에 불과합니다. 하지만 시간이 흐름에 따라, 두 그래프 간의 차이는 줄어들고 이 둘을 구별하는 의미는 많이 사라진다고 볼 수 있습니다.시간 기준과 날짜 기준을 구별하는 이유시간이 흐름에 따라 구별 의미가 줄어들면 굳이 이 두 지표를 나누는 이유가 있나 궁금해질 겁니다. 하지만 우리가 리텐션 지표를 평가할 때는 보통 앱 출시 초기에 다른 앱의 리텐션 지표와 비교하는 식으로 많이 진행합니다. 이 때, 다른 기준의 리텐션 지표를 비교하면 분명 큰 오류가 생기겠죠. 빠르게 시장 반응을 살피고 대응해야하는 앱 출시 초기에는 이 오류가 치명적으로 작동할 수 있습니다.예를 들어, 모바일 게임 초기 버전을 런칭한 후 Day 1 리텐션율이 32%라고 가정해봅시다. 이것만으로는 리텐션이 잘 이루어지고 있는지 판달할 수 없겠죠. 최대한 유사한 게임과 리텐션율을 비교해보아야합니다. 만약 이 때, 시간 기준과 날짜 기준 리테션 지표를 잘못 비교한다면, 제대로된 벤치마크가 되지 않겠죠.결국 어떤 지표로 모바일 게임을 측정해야하나요?리텐션 지표에 정해진 정답은 없습니다. 그렇지만 일반적인 경우에는 날짜 기준 리텐션보다는 시간 기준 리텐션이 더 정확한 현황을 보여준다고 할 수 있습니다. 하지만 시간 기준 리텐션은 정확한 데이터를 얻는데 하루 더 걸린다는 단점이 있습니다. 앱 출시 초기라면 하루 일찍 대응하는 것의 차이가 큰 결과 차이를 만들 수 있죠.정리하자면, "일반적인 모바일 게임이라면 N-day 리텐션을 측정하는 것이 좋지만, 간혹 매일 들어오는 것을 원하지 않는 게임일 경우 Unbounded 리텐션 지표를 사용하는 것이 좋을 수 있으며, 또 기본적으로 시간 기준 리텐션을 측정하는 것이 정확하나, 데이터를 더 빨리 얻어야 할 때는 날짜 기준 리텐션을 먼저 살펴보는 것이 좋다." 정도가 될 것 같습니다.다시 한번 말하지만 리텐션에 정해진 정답은 없으며, 각 지표가 정확히 무엇을 측정하는 것인지 알고 있다면, 어떤 상황에서든 데이터 기반의 유의미한 인사이트를 도출할 수 있을 것입니다.콘텐츠 더 읽어보기고객 리텐션 마스터 가이드북리텐션(Retention) 의미와 측정 방법🔍리텐션 캠페인 효과를 최대화하는 8가지 방법

Amplitude 데이터 건강 관리 3단계
Data Health Assessment + Data Assistant + Tracking Plan으로 데이터 신뢰도 100% 달성하기

개인화 마케팅의 끝판왕 – Amplitude Recommend 기능을 소개합니다!
Amplitude(앰플리튜드)의 Recommend(추천) 기능을 활용하면, 마케팅 팀과 프로덕트 팀 모두 단 몇 분만에 고객 한 명 한 명을 위한 맞춤형 디지털 경험을 제공하는 것이 가능해집니다.Amplitude(앰플리튜드)의 Recommend(추천) 기능은 모든 디지털 서비스 기업이 규모에 맞는 맞춤형 환경을 제공할 수 있도록 합니다. 이 기능을 통해 연도별로 로드맵을 가속화하고, 전환(Conversion) 속도를 높이며(보통 두 자리 숫자입니다), 비용을 약 수백만 달러 절감할 수 있습니다.넷플릭스, 아마존과 같은 개인 맞춤 서비스를 제공하는 것은 모든 기업의 꿈입니다. 각 유저에 맞게 디지털 환경을 최적화하여, 유저 전용으로 맞춤 구축된 것처럼 느껴지게 합니다. 그러나 대부분의 기업에서 이러한 1:1 맞춤화 경험을 자동화하려고 할 때 상당한 진입 장벽에 마주치곤 합니다. 적합한 타겟 유저에게 도달하기 위한 정교한 ID 분석과, 그 타겟 유저에 맞는 적절한 메시지 작성을 위한 머신 러닝, 그리고 유저별 최적의 시간대를 파악하여 실시간으로 전달하는 것이 필요합니다. 또한, 규모에 따른 맞춤화 설정을 위해서는 프로덕트, 마케팅, 엔지니어링 담당자의 협업도 필수입니다. 이를 위해서는 수년 간의 투자와 수백만 달러의 개발 비용이 소요될 수 있습니다. 디지털 서비스 기업은 한 번에 몇 달 동안 리소스를 중단하거나 수백만 달러의 매출 손실을 초래하는 방법 중 절충안을 찾아야 할 수도 있습니다. 하지만 Amplitude(앰플리튜드)의 Recommend(추천) 기능을 활용하면, 절충안을 고민할 필요가 없습니다. 새로운 시대를 위한 새로운 솔루션Recommend(추천)는 Amplitude(앰플리튜드) 디지털 최적화 시스템의 새로운 기능입니다. 이제 Amplitude(앰플리튜드) 행동 그래프를 통해 수집된 데이터를 기반으로 앤드 투 앤드 개인 맞춤화 워크플로우를 단 몇 분 만에 자동화할 수 있습니다. Recommend(추천) 기능은 마케팅 담당자, 프로덕트 매니저, 그로스 팀 등 디지털 경험 관련 담당자가 개인 맞춤화 과정을 직접 관리할 수 있도록 함으로써 개인화에 필요한 기술적인 부담을 줄여줍니다.이 셀프 서비스 플랫폼은 다음의 세 가지 새로운 기능을 통해 적합한 유저에게 최적의 시간에 적절한 메시지를 매핑하는 것에서부터 ‘개인화’의 각 단계를 소개합니다.세분화(Segmentation): Cohorts 및 Computations를 통해 마케팅 담당자가 타겟 고객을 찾을 수 있도록 지원합니다.권장(Recommendation): Predictions 및 Recommendation을 통해 고객에게 전달할 수 있는 차선책 메시지나 콘텐츠를 프로덕트 팀에서 자동화할 수 있습니다.발송(Delivery): 누구나 API 및 동기화를 통해 세그먼트와 권장 내용을 모든 디지털 채널로 내보낼 수 있습니다. 적합한 고객을 찾기 위한 세분화(Segmentation)개인화 과정을 위한 첫번째 단계는 타겟으로 설정할 적합한 고객을 식별하는 것입니다. Amplitude(앰플리튜드)의 Recommend(추천)는 사용자 목록을 구축하여 다운스트림 디지털 채널과 동기화할 수 있도록 지원하는 두 가지 기능 세트, ‘Cohorts’와 ‘Computations’을 제공합니다. Cohorts는 세분화(Segmentation)의 핵심입니다. Amplitude(앰플리튜드)의 Recommend(추천)를 사용하면 지난 24시간 동안 장바구니에 상품을 추가했거나 구독 신청을 하는 등의 이벤트를 기준으로 그룹화된 유저 클러스터를 생성할 수 있습니다. 이 모든 작업은 SQL이나 코드 없이 셀프 서비스 인터페이스를 통해 수행됩니다. 또한 Recommend(추천)는 Amplitude(앰플리튜드) 디지털 최적화 시스템의 일부이기 때문에 Amplitude(앰플리튜드) Analytics(분석)에서 생성된 모든 Cohorts는 Recommend(추천)에서 즉시 사용할 수 있으며, 그 반대의 경우도 마찬가지입니다. Computations는 세분화(Segmentation)의 최고 레벨입니다. Amplitude(앰플리튜드)의Recommend(추천)를 사용하면 시간이 지남에 따라 변하는 행동 정보를 집계하여 사용자 속성으로 변환하고 이를 통해 보다 정교한 필터링을 할 수 있습니다. 예를 들어 사용자가 데이터 엔지니어링을 사용하지 않고도 몇 초 만에 지난 24시간 동안 장바구니 추가하기 이벤트를 수행한 횟수를 카운트하거나 지난 30일 동안의 평균 주문 값을 집계할 수 있습니다. Cohorts와 Computation을 함께 사용하면 참여에 기반한 마케팅 조건을 트리거하는 행동 세그먼트를 식별할 수 있습니다. 적절한 메시지를 찾기 위한 자동화된 권장(Recommendations)대다수의 사람들에게 “개인화” 경험이라고 하면 홈 스크린에 유저 이름을 삽입하거나 현재 위치를 기준으로 사진을 교환하는 것을 의미합니다. 이러한 유형의 창의적이고 인구통계학적 “개인화”는 권장되지만 그 영향은 한계가 있습니다. 과거 혹은 예상되는 미래의 행동을 기반으로 각 개별 사용자에게 완벽하게 맞추는 제품은 개인화가 지닌 모든 장점을 실현하는 것과 같습니다. 이제 Amplitude(앰플리튜드) Recommend(추천)의 Recommendations 기능을 통해 역동적인 제품 경험 제공이 가능해졌습니다. Amplitude(앰플리튜드)의 자동화된 머신러닝 시스템으로 구동되는 새로운 Recommendations 기능을 사용하면 넷플릭스 또는 아마존과 같은 개인화 경험 환경을 만들 수 있습니다. 타겟으로 설정할 적합한 사용자가 식별되면 Amplitude(앰플리튜드) Recommend(추천)는 전환 가능성을 높일 수 있는 콘텐츠, 제품 및 메시지의 올바른 조합을 결정합니다.셀프 서비스 사용자 인터페이스에서 SKU, 아이템 이름, 제품 카테고리 등의 이벤트 속성을 선택합니다. 구매, 구독 등의 최적화를 원하는 항목에 대한 결과도 선택할 수 있습니다. Amplitude(앰플리튜드)의 Recommend(추천)는 구매, 구독 등의 항목의 결과를 높일 수 있는 가능성에 따라 속성의 모든 잠재적 가치의 순위를 자동으로 매겨, 개별 사용자에게 맞춤화합니다. Amplitude(앰플리튜드) Recommend(추천)는 한 번에 최대 100개까지 각 사용자가 선호할 가능성이 높은, 즉 전환 가능성을 극대화할 수 있는 순위 목록을 단 몇 분 만에 생성합니다. 이러한 항목은 분류를 위해 장바구니에 추가 될 가능성을 기준으로 순위가 매겨진 아이템 SKU 혹은 교차 판매 가능성에 따라 순위가 매겨진 제품 카테고리로 분류될 수 있습니다. 이 시스템은 3~5가지 다른 경험을 제공하는 대신 각 개별 유저에게 맞춤화된 수백만 개의 잠재적 경험의 경우의 수를 생성합니다. 데이터 과학 팀의 도움 없이 이 모든 작업을 직접 몇 분 이내에 완료할 수 있습니다. 미국 상위 15개 은행의 소비자 부문은 고객의 금융 지식과 활용 정도를 향상시키기 위해 Recommendations를 사용합니다. 유저가 모바일 앱에 접속하면 은행과 관계 있는, 혹은 행동과 일치하는 콘텐츠가 표시됩니다. 이 콘텐츠는 Amplitude(앰플리튜드) Recommend(추천)에 의해 제공된 ‘개별화’의 결과입니다. Recommendations을 활용한 이후, 이 은행의 영업 성과는 15% 증가했습니다. 최적의 발송 시간을 찾기 위한 실시간 API개인화 워크플로우의 마지막 단계는 발송(Delivery)입니다. 전달할 적절한 메시지를 작성했다면, 이를 적합한 유저에게 전달해야 합니다. Amplitude(앰플리튜드) Recommend(추천)는 실시간 API 및 동기화 기능을 제공하여 코호트, 계산된 속성 및 Recommendations를 디지털 채널에 연결합니다. 동기화 기능을 통해 데이터 개체를 모든 광고, 이메일 또는 실험 플랫폼과 동기화할 수 있습니다. 페이스북 또는 마케토와 코호트를 동기화하고, 유저 행동이 변경되면 해당 광고 및 고객 참여 대상의 캠페인을 자동으로 동기화합니다. 예를 들어 계산된 속성을 Braze(브레이즈)와 같은 작업 플랫폼과 동기화할 수 있으므로 유저의 평균 주문 값이 변경되면 해당 이메일 캠페인에서 속성이 자동으로 조정됩니다. 이 모든 것이 맞춤형 데이터 엔지니어링 파이프라인 없이 한 번의 클릭만으로 가능합니다. 이제 API 프로파일을 사용하여 모든 유저에 대해 REST API 앤드포인트를 쿼리하고 Amplitude(앰플리튜드)에서 유저 데이터로 반환할 수 있습니다. 유저가 사이트나 앱을 방문할 때 유저의 고유 ID별로 프로파일 API를 쿼리하고 Properties, Cohorts 및 Recommendations 목록을 반환하기만 하면 됩니다. 해당 응답을 제품에 직접 포함하고 권장되는 속성에 따라 제품 환경을 조정합니다. 호주의 복권 판매 기업 Oz Lotteries를 지원하는 디지털 플랫폼 점보 인터렉티브는 Braze(브레이즈)를 통해 API 프로파일을 사용하여 아마존 스타일의 Recommendations를 이메일과 푸시 알람으로 제공합니다. 고객들은 구매 후 구매 이력 및 행동 패턴에 따라 관심 있는 다른 게임을 제안하는 후속 커뮤니케이션 메시지를 받게 됩니다. Recommend(추천) 기능은 이메일을 활용한 최대 4개의 제안과 푸시를 통한 1개의 제안을 발송합니다. 그 결과 이 메시지로 인한 체크아웃 전환율이 158% 이상 증가하는 엄청난 성과를 보였습니다. 기본 제공되는 측정 기능Amplitude(앰플리튜드)를 사용하면 여러분이 직접 설정한 개인화 경험 환경의 영향력을 쉽게 측정할 수 있습니다. Amplitude(앰플리튜드) Recommend(추천)에서 만든 모든 코호트는 Amplitude(앰플리튜드) Analytics 기능에서 분석할 수 있습니다. 캠페인의 영향을 이해하는 것은 차트를 작성하는 것만큼 간단합니다. 대상을 다시 생성하거나 작업을 복제할 필요없이 쉽고 편하게 확인할 수 있습니다. Recommendations의 경우, 자동화된 리프트 분석을 통해 측정 기능을 한 단계 더 발전시켰습니다. 여러분이 생성한 각 Recommendation에 포함할 유저의 비율을 선택할 수 있습니다. 0-100% 내에서 자유롭게 선택 가능합니다. 그 다음 API 프로파일에 Recommendation을 쿼리하면 Amplitude(앰플리튜드)가 사용자에게 컨트롤 권한을 할당하거나 Recommendation을 제공합니다. 동시에 자동으로 가장 영향력이 큰 이벤트를 기록하여 Recommendation이 기존 경험 환경에 얼마나 큰 영향을 미치는지 추적합니다. 간단히 Recommendation의 성능(Performance) 탭을 클릭하면 확인할 수 있습니다. 분석 및 개인화를 위한 하나의 통합 시스템이 통합 데이터 세트에 모두 구축되어 있으므로 여러분이 생성한 개인화 경험 환경의 실행 루프를 쉽게 닫을 수 있습니다. 단 몇 분 만에 끝내는 개인화 설정Amplitude(앰플리튜드) Recommend(추천)의 장점은 디지털 최적화 시스템의 완전한 피드백 루프를 가능하게 한다는 것입니다. Amplitude(앰플리튜드) Recommend(추천)에서 버튼을 클릭하면 코호트와 Recommendations를 생성할 수 있고, 이를 여러분의 광고, 이메일, 인앱 캠페인과 동기화할 수 있으며, 이 모든 캠페인의 성과를 Amplitude(앰플리튜드) Analytics에서 다시 모니터링 할 수 있습니다. 이 프로세스의 자동화를 통해 프로덕트 팀과 마케팅 팀을 연결하여 런칭에 필요한 시간을 단축할 수 있습니다. 통합 머신러닝은 엔지니어링 비용을 절감하고 Recommendations의 정확도를 높입니다. 또한 상호 보완 분석을 통해 이러한 개인화 실험의 영향력을 안정적으로 측정할 수 있습니다.
![[FAQ] 구글 UA 종료 & GA4 전환에 대해 궁금한 모든 것 [FAQ] 구글 UA 종료 & GA4 전환에 대해 궁금한 모든 것](https://maxonomy-prd-pub-a-s3.s3.ap-northeast-2.amazonaws.com/upload/BoardThumbnail/38758/MsrSf8ZV.webp)
[FAQ] 구글 UA 종료 & GA4 전환에 대해 궁금한 모든 것
✒️ Adam Greco | Amplitude 프로덕트 에반젤리스트Adam Greco는 디지털 분석 업계의 리더입니다. 지난 20년 동안 수백 개 이상의 조직에 분석의 베스트 프랙티스를 조언했으며, 분석과 관련된 300개 이상의 블로그 글을 쓰고 책을 저술했습니다. Adam은 분석 컨퍼런스에서 자주 연사로 활동하며, Digital Analytics Association의 이사직을 역임했습니다.구글 애널리틱스(GA)는 무료 디지털 분석 제품이자 유비쿼터스 광고 플랫폼으로써 디지털 분석 시장에서 가장 큰 점유율을 차지하고 있습니다. 많은 Amplitude(앰플리튜드) 고객들은 Amplitude(앰플리튜드)와 구글 애널리틱스를 동시에 사용하고 있습니다. Amplitude(앰플리튜드)를 매우 효과적으로 활용하고 있는 고객조차 GA를 빈번하게 사용하고 있는데, 이는 GA와 구글의 광고 네트워크가 긴밀하고 밀접하게 연동되어 있는 시스템으로 디지털 광고 공간에서의 독점력이 있기 때문입니다.구글이 UA 제품 서비스를 종료한다는 것을 발표한 이후, Amplitude(앰플리튜드) 고객들의 질문이 끊이지 않고 있습니다. 저는 여러 차례 이 주제에 대해 고객들과 대화를 나눠왔고, 이번 포스팅에서는 그 중 몇가지 대중적이고 중요한 질문과 제가 답변했던 내용을 공개합니다.저와 이야기 나누었던 대부분의 고객은 구글의 최신 업데이트와 그 영향력에 대해 관심이 많았으나, 동시에 우려도 있었습니다. 그렇기 때문에 질문의 내용이 비판적인 경향이 있으며, 저는 GA 전문가가 아니기 때문에 그동안의 디지털 분석 경력을 바탕으로 고객으로부터 들은 주요 내용과 답변을 정리했음을 참고해 주십시오.본 포스팅에서는 GA4가 UA에 비해, 혹은 Amplitude(앰플리튜드)가 GA4에 비해 좋다, 좋지 않다를 평가하지 않습니다. GA를 사용하고 있는 Amplitude(앰플리튜드) 고객이, UA 종료 발표로 인해 일반적으로 거론되고 있는 질문에 대한 해답을 이해하는 데 목적을 두고 있습니다.구글은 왜 GA4로 전환할까요?디지털 분석 산업은 최근 몇 년간 많은 변화를 겪고 있습니다. 웹사이트와 모바일 애플리케이션의 영향력이 증가되면서 기존의 웹사이트 세션 및 페이지 뷰 중심의 분석 활용은 줄어들고 있습니다. 단일 페이지 애플리케이션과 멀티 플랫폼 활용 등으로 디지털 경험이 더욱 복잡해짐에 따라, 대부분의 기업에서는 보다 정확한 디지털 분석을 위해 이벤트 기반의 데이터 모델로 전환하고 있습니다.기존의 GA는 모바일 앱이나 이벤트 기반 분석을 위한 모델로 개발되지 않았기 때문에, 구글은 이를 보완하기 위해 모바일 앱과 이벤트 데이터를 베이스로 개발하는 Firebase를 인수했습니다. 인수 후에 구글은 GA 고객이 Firebase를 활용하여 모바일 앱 분석을 하도록 했으나, 모바일 앱과 이벤트 기반 모델의 인기가 높아짐에 따라 Firebase 플랫폼을 확장시키는 것으로 결정했습니다. (초기에는 ‘GA 앱 + 웹’ 이었으나 현재는 GA4가 되었습니다)GA4로 반드시 마이그레이션 해야하나요? 여기에는 무엇이 포함되나요?구글은 최신 공개된 GA4로 마이그레이션하는 것을 권고했습니다. 그러나 GA4로 마이그레이션하는 작업이 그리 간단하지는 않습니다. 기존과 전혀 다른 데이터 구조를 사용해야 하기 때문에, UA에서 GA4로 전환하는 것은 완전히 새로운 분석 솔루션으로 전환하는 것만큼이나 많은 작업이 소요됩니다. 예를 들어, 조직에서 GA를 통해 이커머스 추적을 사용하는 경우 마이그레이션을 위해 수행해야 하는 여러 특정 단계들이 있으며 이전 버전과의 호환성 문제가 발생 될 수 있습니다.제가 이야기 나눴던 일부 기업에서는 ‘현재 완료해야 할 작업이 많다면 GA를 그대로 사용하는게 합리적인지, 혹은 다른 솔루션 업체를 검토하는 것이 나은지’를 문의해왔습니다. 지금처럼 서비스가 종료되는 강제적인 조건에서는 해당 조직이 현재 얼마 만큼의 기술 투자를 받고 있는지 확인해 볼 수 있는 좋은 기회 이기도 합니다. 현재 많은 기업의 UA는 ‘autopilot’이라는 자동 조정 장치에 의해 구현 되고 있다고 들었습니다. 이 autopilot은 유용하지만 오랜 시간 업데이트 되지 않았기 때문에 실용적인 인사이트를 제공하지는 않았습니다.사용도가 낮은 환경으로 구현된 GA를 보완하기 위해서, GA4는 즉시 사용 가능한 새로운 기능들 (예: 아웃바운드 링크, 검색어 기능, 파일 다운로드, 등)로 구성되어 있습니다. 타 디지털 분석 제품들과 GA를 함께 활용하는 기능들이 새롭게 추가되어, GA4로 업그레이드를 한 뒤에 그 효과를 확인하는 기업이 많아질 것 입니다. 하지만 저는 이런 방안들이 기업에서 디지털 분석 프로그램 도입을 검토하는 기회가 되기를 바랍니다.대부분의 Amplitude(앰플리튜드) 고객들이 일정기간 GA도 함께 사용할 것으로 예측되고 있기 때문에, 우리의 목표는 GA 없이 Amplitude(앰플리튜드) 한 가지 만을 분석 솔루션으로 활용해도 충분히 업무에 활용 가능하다는 것을 뒷받침할 수 있는 제품 및 마케팅 활용 사례를 제공하는 것입니다.이전 GA 데이터는 어떻게 되나요?UA 종료 임박과 관련하여 많은 분들께서 가장 관심있어 하는 부분은 과거 데이터의 손실 여부입니다. 구글이 공시한 날짜를 고려해 보면, 많은 기업에서 즉시 조치를 취하지 않으면 전년 대비 데이터를 확인하지 못하게 될 것 이라는 우려가 있습니다. 대부분의 기업에서는 연도별 데이터 확보를 중요하게 생각하고 있으나 실제로 이를 사용하는 기업을 그렇게 많이 보지는 못했던 것 같습니다. 과거 데이터에 진정으로 관심을 갖고 있는 기업이라면 이미 내부 저장소에 분석 데이터를 보유하고 있을 것이므로, GA 종료 날짜가 다가온다고 해도 크게 혼란은 없을 것으로 예상됩니다.하지만 이 경우라도 이전 데이터를 보존하는 것이 조직에 중요한 경우, 안전을 위해 7월 1일 이전(UA 데이터 수집이 중지되기 1년 전) GA4 인스턴스에 중요 KPI를 추가하는 것이 좋습니다. 혹은 Amplitude(앰플리튜드)의 무료 GTM 템플릿(클라이언트 측 또는 서버 측)을 사용하여 데이터를 Amplitude(앰플리튜드)로 전송할 수도 있습니다. 벤더가 제시한 임의 날짜에 따라 단기적으로 결정하는 것보다는 장기적으로 어떤 플랫폼에 투자할 것인지를 검토하는 것이 더 좋습니다. 개인적인 견해로는 UA 종료 발표에 따른 사용자의 불안감을 고려해 볼 때, 구글이 결국에는 종료 날짜를 연장할 가능성이 크다고 생각합니다.GA4는 시장에서 사용될 준비가 되었나요?많은 분들께서 UA에서 가능했던 모든 기능을 GA4로 대체할 수 없다고 말합니다. 조금만 검색해보면 GA4의 단점을 적어놓은 트위터와 링크드인 게시물을 쉽게 찾을 수 있는데, 어떤 사람들은 GA4가 아직은 시장에서 사용되기에 완벽히 준비되지 않았다고 표현하기도 합니다.GA4가 UA에 비해 몇 가지 개선 사항이 있는 것처럼 보이지만 우려되는 점도 있습니다. 많은 분들의 의견을 통해 확인한 내용을 정리해보자면 다음과 같습니다.이전에는 즉시 사용 가능한 리포트가 여러 형태로 제공되었다면, GA4에서는 탐색 리포팅 인터페이스를 사용하는 것으로 바뀝니다. 이 새로운 인터페이스 구성은 궁극적으로는 보다 강력한 리포팅 기능을 제공하지만, 이전 UA 사용자(특히 초보자)는 사용이 어려워 리포트를 익히는 데 별도의 트레이닝이 필요해 보입니다.GA4에서 문제가 될 수 있는 부분은 디멘션 및 디멘션 문자 길이에 대한 제한이 있다는 점입니다. UA 고객이 GA4에서 사용 가능한 것보다 더 많은 디멘션을 활용했을 경우도 있을 수 있습니다. 제 경우에는 고객이 우선 순위를 지정할 수 있도록 하는 것을 선호하는 편이지만, 대규모로 구현을 해야하는 고객에게는 결국 문제가 될 수 있습니다.GA4에서 한개의 디멘션에 포함된 디멘션 카디널리티가 다른 디멘션에 영향을 줄 수 있는 상황이 발생할 수 있습니다. (표준 보고서 조건에서)표준 속성이 있는 경우 카디널리티가 높은 측정 기준을 생성하지 마십시오. 카디널리티가 높은 측정 기준은 일별 고유 값이 500개를 초과하는 측정 기준입니다. 이 측정 기준은 리포트에 부정적인 영향을 미칠 수 있으며, 데이터가 (기타)행에 집계될 수 있습니다. 예를 들어 사용자 ID 와 같은 높은 카디널리티 측정 기준의 경우(즉, 각 고유 사용자에 대한 ID를 수집하려는 경우)에는 User-ID 기능 을 사용합니다.카디널리티- 카디널리티는 측정 기준에 할당된 고유한 값의 개수를 나타냅니다.- 일부 측정 기준은 고유한 값의 개수가 고정되어 있습니다(예: *기기* - 3: 데스크톱, 태블릿, 모바일). 반면 하루에 고유한 값이 500개를 초과하는 측정 기준은 카디널리티가 높은 측정기준으로 간주됩니다.- 카디널리티가 높은 측정 기준이 있으면 리포트의 행 수가 증가하므로 리포트가 행 한도에 도달하여 데이터가 [(다른) 행] 아래에 집계될 가능성이 커집니다. (https://support.google.com/analytics/answer/9309767)GA4에서는 측정 기준 카티널리티로 인해 표준 리포트와 탐색 리포트에 서로 다른 측정 항목 합계가 표시되는 상황이 있을 수 있습니다.GA4는 BigQuery와 더 많이 통합 되어 고급 사용자에게 유용할 수 있지만, 일반 사용자는 고급 사용자 인터페이스를 새로 배워야 합니다.BigQuery로 GA4 데이터 내보내기는 하루에 100만 이벤트로 제한되며, 이로 인해 그동안 ‘무료’ 분석을 사용해 온 많은 조직이 구글에 비용을 지불하게 됩니다.GA4 ‘무료’ 버전의 데이터 보존 기간은 최대 14개월 입니다. 즉, BigQuery에 보존하려는 모든 데이터를 저장해야 하며, 장기간 리포트에 탐색 보고 인터페이스를 사용 할 수 없습니다.현재 GA4에는 연계된 써드파티 솔루션이 거의 없습니다.유럽내에서 구글의 개인정보 보호 문제는 어떤가요?유럽에서는 GA의 합법성과 관련된 법안이 논의되고 있습니다. 대부분 사소한 문제이지만, 광고 네트워크 및 다국적 기업과 연결된 디지털 분석 솔루션에서는 몇 가지 중대한 이슈가 확인되고 있습니다. 저는 고객이 결정할 수 없는 외부적인 요인(법적 판결)으로 인해 디지털 자산에 대한 모든 가시성을 잃게 될 수도 있다는 점을 우려하고 있습니다. 그리고 이 두려움이 결코 실현되지 않기를 바랍니다.개인 정보 문제의 위험을 증가시키는 GA의 특정 부분이 있습니다. 예를 들면, GA가 익명 방문자를 식별하고 데이터를 수집하는데 사용하는 메커니즘인 구글 시그널 데이터 입니다. 구글 시그널을 사용하면 다음의 두 가지 작업을 수행할 수 있습니다. 다른 솔루션과는 차별화되는, 오직 GA에서만 가능한 작업입니다.광고 네트워크를 활용하여 사용자(익명 사용자 포함)의 다양한 기기에서 추적 수행연령, 성별 및 광고 관심 분야와 같은 사용자에 대한 인구 통계 정보 추가구글 시그널은 대부분의 사람들이 최소 한 가지의 구글 제품 (예: 크롬, 지메일)을 사용하면서 ‘광고 개인화’ 기능을 끄지 않는다는 사실을 이용하여 이 작업을 수행합니다. 구글은 방대한 광고 네트워크를 보유 하고 있기 때문에 사용자의 인구 통계 및 관심 정보를 수집하고 이를 GA와 익명으로 공유 하게 됩니다. 예를 들어, 한 중년 여성이 지메일을 사용한다면, GA는 구글 계정에서 이 중년 여성의 인구 통계적 정보와 관심 분야를 확인할 수 있습니다. 저 또한 한 명의 디지털 분석가로서 추가적인 인구 통계적 정보와 관심 정보를 얻는 것은 좋지만, 사용자는 구글의 광고 네트워크가 자신에 대한 정보를 GA에 제공하고 있다는 사실을 깨닫지 못할 가능성이 높습니다.구글 시그널은 GA 관리자가 해제할 수 있지만, GA를 사용하는 대부분의 조직에서는 이 기능을 사용하도록 설정하고 있으며, 구글 계정 내에서 광고 개인화의 비활성화에 대해 아는 사용자는 거의 없습니다. 또한 현재 GA는 조직이 유저 ID와 기기 ID만 사용할 수 있는 옵션을 제공하는 대신, 구글 시그널 데이터를 포함하면 유저 ID로 유저(사용자)를 추적할 수 있도록 허용하고 있습니다.현재는 구글 시그널 정보가 모든 동의 요구 사항을 준수하는 경우 GDPR과 함께 사용되어도 적합하다고 간주되지만, 구글 시그널은 GDPR의 원칙에 어긋나므로 GA에서 구글 시그널 기능을 제거하거나 ‘옵트인’을 선택하게 하도록 EU에서 강제할 수도 있습니다. 이렇게 될 경우 GA의 장점 중 일부를 사용하지 못하게 됩니다.구글의 전체 비즈니스에서 분석(Analytics)은 얼마나 중요한가요?저와 이야기를 나눴던 많은 분들은 강력하고, 때로는 무료로 제공되는 GA의 디지털 분석 제품에 항상 액세스 할 수 있는 환경을 경험해왔습니다. 저는 이들에게, GA가 처음에는 구글의 디지털 광고 캠페인의 성과 측정에 도움을 주기 위해 인수(Urchin)되어 무료로 제공되었다는 점을 강조하고 싶습니다. 구글은 기업이 디지털 광고에 더 많은 비용을 지출하도록 하는 데 데이터가 핵심 열쇠라는 것을 알고 있습니다. GA는 구글 광고와 밀접하게 연결되어 있습니다.기업에서 향후 10년 동안 사용할 디지털 분석 플랫폼을 고려할 때, 구글의 광고 비즈니스가 분석 비즈니스보다 훨씬 더 중요하다는 사실을 인식하는 것이 중요합니다. 디지털 광고가 (개인정보 보호 문제로 인해) 사라지거나 크게 줄어들 경우에도 구글은 GA 무료 버전 혹은 지원을 위해 계속해서 자금을 투자할까요? 저는 GA 서버를 호스팅하고 GA 제품을 지원하는 데 많은 비용이 들어간다고 확신합니다. 지금처럼 광고가 캐시 카우로 큰 자금을 생산하고 있을 때는 문제가 되지 않습니다. 하지만 광고비가 고갈되면 어떻게 될까요? 그리고 GA가 많은 법적 이슈를 일으켜 구글의 핵심인 광고 비즈니스에 영향을 주기 시작했다면 어떻게 될까요? 분석 제품으로 인해 광고 수익을 잃게 될 것이라는 우려를 하게 된다면 분석 제품은 눈엣가시로 전락할 수 있습니다. 구글의 모든 개인 정보 보호 및 소송 문제를 감안해보면 분석 제품이 구글의 발목을 잡게 될 수도 있습니다. 미래를 예측하기는 어렵지만, 저와 이야기하는 일부 조직에서는 광고와 분석이 주요 비즈니스 모델인 기업(벤더)에 의존하는 것이 언젠가는 다시 그들을 괴롭힐 수 있다는 우려를 나타내고 있습니다.또한 현재 구글에는 GA의 서비스 규모에 맞게 다른 분석 솔루션 벤더사보다 많은 수의 엔지니어가 있지만, 언젠가는 구글이라는 거대한 기업 내에서 분석 제품이 사라지게 될 수도 있습니다. 일부의 말에 따르면, 최근에는 몇 년 전과 비교하여 기능 요청과 버그 보고가 거의 이행되지 않았다고 합니다. 반면, 분석 제품만을 유일하게 제공하는 벤더사와 협력할 때는 제품을 개발하고 개선하려는 의지가 높다는 이점을 확인할 수 있습니다.구글의 지원 및 서비스 방식에는 어떤 변화가 있을까요?저와 이야기를 나눈 기업 중 일부는 구글의 직접적인 지원을 원한다고 말했습니다. 전통적으로 GA 고객은 구글과 직접적인 상호 작용이 많지 않았습니다. 오히려 구글의 대행사 또는 파트너사와 협력하는 것이 일반적이었습니다. GA에 전문 역량을 갖춘 열정적인 대행사와 컨설턴트가 있다는 것에는 의심할 여지가 없습니다. 그러나 때로는 문제가 발생했을 때 솔루션 공급 기업인 구글과 직접 논의하는 것이 필요할 수 있습니다. 일부는 GA4에 구글의 직접적인 지원이 포함될 지 궁금해 했습니다. 하지만 아직까지는 이 문제에 대해 새로운 것을 보지 못했고, GA4도 과거와 같은 방식으로 지원될 것으로 예상됩니다.GA4는 데이터 품질과 거버넌스를 어떻게 지원하나요?오늘날 대부분의 GA 고객은 데이터 분류 체계(텍소노미) 리스트를 정리한 구글 시트에서 실행을 관리합니다. 같은 관점에서 Amplitude(앰플리튜드) 고객들이 Amplitude(앰플리튜드)에 대해 만족하는 것 중 하나는, Amplitude(앰플리튜드)가 데이터 거버넌스에 많은 투자를 하고 진심으로 연구하고 있다는 점입니다. 그리고 저는 고객들이 GA4도 동일한 기능을 갖추기를 원한다고 생각합니다.이벤트 기반 분석 플랫폼은 고객 행동을 추적하고 분석하는 데 확실히 더 강력하지만, 그만큼 데이터 관리에 더 많은 투자를 해야합니다. 데이터 거버넌스를 위한 강력한 툴킷은 반드시 필요하며, 이는 분석 실행을 문서화하는 구글 시트로는 충분하지 않습니다.최적의 의사 결정을 이끄는 훌륭한 인사이트를 확인하려면, 이벤트를 시간에 따라 계획하거나 도구화 시키고, 검증, 조직화, 변형 및 여러 방면에서 관찰해야 합니다. 훌륭한 데이터 거버넌스 도구가 없다면 신뢰할 수 없는 데이터와 거듭되는 재계측으로 인해 장기적으로는 비용이 높아집니다. 이러한 악순환은 대부분의 분석 작업이 실패하는 이유이기도 합니다.보다 높은 데이터 품질, 엔지니어의 만족, 데이터 플랫폼 비용의 절감을 위해 고객은 GA4(적어도 GA360)가 궁극적으로 다음 기능들을 제공하기를 바라고 있습니다플래닝 트래킹 기본 제공(built-in)이벤트 유효성 확인을 위한 관찰 검사개발자 우선 환경 (Jira 연동, 명령줄, SDK, 분기)보다 강력한 데이터 속성 변환 유형그러나 GA4가 데이터 거버넌스 영역에 얼마나 많은 투자를 할지는 조금 더 지켜봐야 할 부분입니다.GA4가 제공하는 데이터 및 마케팅 통합 기능은 무엇인가요?오늘날의 기업에서는 데이터 웨어하우스, CDP, 이메일 인게이지먼트 및 메시징 플랫폼, 광고 네트워크, 어트리뷰션 및 위치 인텔리전스 툴, 실험 플랫폼 등 많은 도구를 사용합니다. 현재 GA4는 BigQuery, 세일즈포스 마케팅 클라우드와 연동되어 있으나, 이를 위해서는 백엔드 개발 및 API 작업이 필요합니다. 단일 고객 행동 프로파일, 고객 인게이지먼트 및 여정 전체 보기, 다양한 채널과 도구에서 데이터에 조치를 취할 수 있도록 스택을 통합하려는 경우, GA4에는 몇 가지 제한 사항이 있을 수 있습니다. 점점 더 많은 기업에서 디지털 분석 솔루션과 Snowflake, Amazon S3, BigQuery 등과 같은 데이터 웨어하우스를 함께 활용하고 있으나, 현재 GA에서는 BigQuery만 즉시 사용 가능하며 다른 데이터 웨어하우스와 연동하려면 기업에서 추가 개발이 필요합니다.마치며초반에 언급했듯이 UA 종료 및 GA4와 관련된 수 많은 질문과 알려지지 않은 내용이 있었습니다. Amplitude(앰플리튜드)를 사용하는 고객도 다른 조직과 마찬가지로 이에 영향을 받습니다. 바라건대 여러분이 여기에 제공된 정보를 통해 그동안 지녔던 수 많은 궁금증에 대한 답을 얻으셨으면 좋겠습니다. 주요 기술이 변화함에 따라 많은 걱정이 있으실 것으로 생각됩니다. GA는 보편적으로 사용되던 서비스이므로 그만큼 더 많은 질문과 우려가 있는 것이 당연합니다. 앞으로 많은 사용자 커뮤니티에서, (저보다 GA에 대해 많이 알고 있는) GA전문가들이 이러한 내용을 다루면서 더 나은 답을 찾게 될 것이라고 확신 합니다. 아마 대부분의 기업에서 큰 혼란은 발생하지 않겠지만, 기업에서 사용하는 모든 기술을 지속적으로 재평가하고 앞으로의 최선책을 결정하는 일은 무엇보다 중요하다고 말씀드리고 싶습니다.