앰플리튜드
분석 솔루션, 여러 개 써도 되나요?🤔
Team MAXONOMY ・ 2023.12.12

여러 가지 데이터를 통해 인사이트 발견을 돕는 분석 솔루션! 대표적으로 GA4, Amplitude가 있죠.
어떤 조직에서는 이런 분석 솔루션을 2개 이상 사용하기도 합니다. 한 조직에서 여러 개의 분석 솔루션을 사용하는게 과연 좋을까요? 이번 포스팅에서는 분석 솔루션을 여러 개 사용하는 것이 좋은지에 대해서 알아보겠습니다. 우선 그 현황부터 파악에 보죠! 분석 솔루션을 이렇게 여러 개 사용하는 기업은 보통 다음 케이스에 속할 겁니다.
웹사이트 분석용 솔루션, 앱 분석용 솔루션을 따로 사용
여러 솔루션을 사용하는 가장 큰 이유입니다. 대개 이런 경우는 마케팅 팀과 프로덕트 팀의 협업 부재로 발생합니다. 일반적으로 마케팅 팀이 웹사이트를 관리하고 프로덕트 팀이 모바일 앱을 관리하다보니 이런 현상이 발생하죠. 더 자세히 말하자면, 웹사이트는 주로 온라인 홍보/광고를 위해 구축하는 경우가 많다보니 자연스럽게 마케팅 팀이 관리를 하게되고, 모바일 앱은 주로 개발과 관련된 팀이 중심이 되어 구축하는 경우가 많다보니 프로덕트 팀이 관리하게됩니다. 이렇게 분리된 업무 영역이 굳어져 굳이 2개의 분석 솔루션을 사용하게 되는 것이죠. 하지만 특별한 이유가 없다면 이렇게 2개의 솔루션을 사용하는 건 비효율적입니다.
메인 솔루션의 부족한 기능 보충
메인 솔루션이 가지고 있는 아쉬운 부분을 보충하는 용도로 여러 개 솔루션을 사용하는 경우입니다. 예를들어 Amplitude를 메인으로 사용하고 광고 통합을 위해 Google Analytics를 추가로 사용하는 경우나, 반대로 Google Analytics를 메인으로 사용하고 세션 재생 기능을 위해 Amplitude를 보조적으로 사용할 수 있죠. 하나의 솔루션으로 모든 기능을 충족할 순 없습니다. 사용하는 솔루션의 부족한 부분이 있다면, 다른 솔루션을 통해 충족하는 방법도 충분히 고려해볼만하죠.
다수의 분석 솔루션 사용 문제점😵💫
하지만 정말 특별한 경우가 아니라면 솔루션을 여러 개 사용하는 장점보다는 단점이 더 큽니다. 다음과 같은 많은 문제점이 발생할 수 있기 때문입니다.
솔루션별로 다른 고객 프로필 관리
고객을 더 깊이 이해하기 위해선 고객 정보를 하나로 통일하는 게 중요합니다. 하지만 솔루션을 여러 가지 사용하면 고객 정보가 흩어지게 되죠. 물론 고객 데이터를 내보내서 다른 솔루션에 통합하는 방식을 사용할 수 있겠지만, 이 작업에 만만치않을 시간이 소요됩니다. 어찌저찌 통합하였다 하더라도 실시간으로 고객 정보를 파악하고 대응하는 것이 불가능해집니다.
고객 경험 개인화 어려움
위의 문제점과 동일한 이유로 고객 프로필을 하나로 통일하지 않는다면, 개인화된 경험을 고객에게 제공하기 어려워집니다. 개인화는 시장에서 가장 큰 차별 요소이자, 요즘 시대에 필수적인 기능이 되어가고 있습니다. 고객은 이제 기업이 알아서 관련 상품, 콘텐츠, 혜택을 추천해주길 기대합니다. 또한 이런 개인화는 실시간성이 더해질 때 훨씬 효과적입니다. 실시간으로 고객의 행동과 원하는 것을 파악하여 제공할 필요가 있습니다.
세그먼트 구축의 어려움
행동 데이터를 기반으로사용자를 세분화하는 것이 분석 솔루션의 메인 기능입니다. 다수의 솔루션을 사용하면 이 중요한 기능에 제약을 받을 수 밖에 없죠. 호환되는 데이터를 내보내는 것이 아니라면, 세그먼트 기능을 깊게 활용하기 어려울 것입니다.
어떤 한 기업이 마케팅 분석에는 Google Analytics를 사용하고, 모바일 앱에는 Amplitude를 사용한다고 가정해봅시다. 그리고 한 고객이 이메일 광고를 통해 웹 페이지를 방문하고 장바구니에 상품을 담았는데 당장 구매하지 않고 그 다음 주에 모바일 앱으로 구매를 하였다고 가정해봅시다. 이 때 이 고객이 이메일을 클릭했다는 정보와 웹 페이지에서의 행동 정보는 Google Analytics에 기록되고, 앱에서의 쇼핑 행동 정보는 Amplitude에 기록됩니다. 이메일 광고가 매출에 얼마만큼 기여하였는지 측정하고 싶어도 제대로 된 측정 값을 알 수 없게 되는거죠.
전체 고객 여정 파악 불가
고객은 한 가지 플랫폼을 사용하지 않습니다. 모바일 앱으로 접속했다 웹으로도 접속하죠. 하나의 분석 솔루션을 사용하면, 여러 플랫폼 사이에 고객이 얼마나 자주 이동하고 어느 부분에서 이탈하는지 파악할 수 있습니다. 여러 개의 솔루션을 사용하면 할 수 없죠.
여러 솔루션 학습 필요
솔루션 사용법을 배우는 것도 만만치 않은 일이죠. 솔루션이 여러 가지면 그만큼 학습하는 데 시간이 걸리고 머리도 복잡해집니다. 팀마다 다른 솔루션을 사용하는 경우라도, 서로 의사소통이나 협업하는 과정에서 상대방 솔루션을 어느정도 익혀야할 것입니다.
솔루션 사용 비용
여러 솔루션을 사용하면 비용도 당연히 배가 됩니다. 솔루션 마다 중복된 데이터가 많이 수집된다는 점을 생각하면 정말 아까운 일이죠. 또한 데이터는 수집할 수록 비용이 감소하는 경향이 있습니다. 여러 분석 솔루션을 사용한다면 이런 이점을 활용하지 못하고 각각에 대해 초기 데이트 프리미엄을 지불할 가능성이 높습니다.
데이터 관리의 문제
다수의 솔루션을 사용하는 가장 귀찮은 점은 데이터를 지속적으로 비교해야 한다는 것입니다. 데이터를 비교하는 시간도 시간이지만, 만약 데이터가 다르게 표시된다면 어떤 데이터가 잘못되었는지 파악하는 것도 어렵고 연결되어있는 여러 부서의 업무가 마비될 수 있습니다. 이런 데이터 관리의 문제는 단순 귀찮고 시간이 많이 들어가는 것을 넘어, 기술적인 문제로 이어져 제대로 된 데이터 활용 자체를 어렵게 할 수 있습니다.
마치며😎
결론적으로 여러 분석 솔루션을 사용하는 건 단점이 굉장히 크다는 것을 알 수 있습니다. 그렇기 때문에 많은 전문가들은 앞으로 분석 솔루션 시장이 하나의 솔루션으로 표준화될 것이라고 말합니다. Amplitude가 제품, 마케팅, 웹사이트, 모바일 앱 까지 모든 기능을 충족하는 최초의 분석 솔루션이 되는 것을 목표로 삼은 이유가 바로 여기있습니다. 아직 많은 작업이 남아 있지만, Amplitude는 분석 솔루션 시장의 선두적인 위치에서 그 목표를 향해 꾸준히 나아가고 있습니다.

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기
AI 검색 시대의 필수 도구: Amplitude AI Visibility 출시
SEO를 넘어 GEO, AEO시대의 시작SEO(Search Engine Optimization: 검색엔진 최적화)는 아주 중요한 디지털 마케팅 활동 중 하나였습니다. SEO란, 검색엔진 최적화라는 뜻으로 구글, 네이버와 같은 검색 엔진에서 우리의 브랜드가 잘 노출될 수 있도록 하는 활동을 의미합니다. 가령, 어떤 고객이 ‘마케팅 솔루션 추천’이라고 검색한다면, 이 검색어에서 최상단에 노출되는 브랜드 일수록 해당 고객과 연결될 가능성이 높겠죠. 게다가 해당 고객은 마케팅 솔루션에 관심이 있는 고객이라 보통의 다른 고객보다 훨씬 더 마케팅 솔루션을 구매할 가능성이 높습니다. 이를 ‘고의도’ 고객이라고 합니다.이런 중요한 마케팅 활동이었던 SEO가 변하고 있습니다. AI의 등장으로 고객 여정이 급변하고 있기 때문인데요. 무언가를 알고 싶을 때, 사람들은 더 이상 구글 같은 검색 엔진에만 의존하지 않고, ChatGPT, Claude, Google AI Overview와 같은 AI 도구에 질문하기 시작했습니다. 이러한 변화는 매우 빠르게 일어나고 있으며, 일부 보고서에 따르면 웹 브라우징 세션 10개 중 6개에 AI 검색이 포함되어 있다고 합니다. 최근엔 이런 AI 검색 결과에 잘 노출될 수 있게 하는 활동을 AEO(AI Engine Optimization) 혹은 GEO(Generative Engine Optimization)라고 부르고 있습니다.요즘의 AI도구는 출처 표기를 기본적으로 제공하고 있지만, 검색 엔진에 비해 훨씬 높은 수준으로 개인화되어있고, 입력하는 질문(프롬프트)에 따라 응답이 크게 변합니다. 때문에 자신의 브랜드가 AI 검색 전반에 걸쳐 어떻게 노출되고 있는지, 혹은 왜 경쟁사들이 계속 우위를 점하는지 파악하는 것은 쉽지 않습니다. 게다가 AI 기반 검색 시스템은 전통적인 검색 엔진보다 연결하는 사이트가 적은 경향이 있어, AI 응답에 등장하지 않는 브랜드는 고의도 고객과의 접점을 놓칠 위험이 있습니다.Amplitude AI Visibility이러한 새로운 검색 환경에 대응하고 브랜드 가시성을 확보할 수 있도록, Amplitude가 AI Visibility를 출시했습니다! AI Visibility는 AI 검색 환경에 우리 브랜드가 얼마나 어떻게 노출되고 있는지 정확히 이해할수 있도록 도와줍니다. Amplitude 플랫폼에 직접 구축되어 있어, AI 검색 성과를 실제 비즈니스 결과 및 수익과 연결할 수 있습니다.가장 주목할 만한 점은, Amplitude AI Visibility는 무료로 제공된다는 것입니다. 다른 AEO 도구가 비용이 많이 들거나, 기존 SEO 제품에서 추가적인 옵션으로 제공되는 것과 차별화됩니다. Amplitude 고객은 모든 플랜에서 이 기능을 사용할 수 있으며, 비고객에게도 제한된 무료 경험을 제공합니다.AEO 무료 분석하러 가기AI Visibility 자세히 알아보기1. 검색 결과 페이지가 없는 세상을 위한 새로운 SEO앞서 설명했지만, Amplitude AI Visibility의 핵심은 'AI 채팅을 위한 SEO'입니다. 기존 SEO가 구글 검색 결과 페이지(SERP) 순위 경쟁이었다면, 이제는 AI의 답변에 우리 브랜드를 더 자주, 더 긍정적으로 등장시키는 것이 새로운 목표가 되었습니다. 이는 단순히 트렌드를 따르는 것이 아닌, 생존을 위한 필수 역량입니다.점점 더 많은 고객이 구체적인 질문을 AI에게 직접 던지고 있습니다. 이때 AI의 답변에 우리 브랜드가 포함되지 않는다면, 사실상 시장에 존재하지 않는 것과 마찬가지입니다. AI 검색은 더 이상 먼 미래가 아니며, 이 새로운 전장에서 보이지 않는 브랜드는 고객을 경쟁사에 빼앗길 수밖에 없습니다."AI 검색은 더 이상 미래가 아니라 브랜드 노출의 새로운 최전선입니다. 이제 브랜드가 AI 응답에 등장하지 않는다면 존재하지 않는 것과 마찬가지입니다."2. 경쟁사 현황 시각화'경쟁사가 우리보다 AI에서 더 잘하고 있을까?'라는 막연한 생각은 이제 끝내세요. AI Visibility는 LLM에서 자사 브랜드가 경쟁사와 어떻게 비교되는지 명확한 데이터를 제공합니다. 특히 주제별 경쟁력을 한눈에 비교할 수 있는 시각적 매트릭스(visual matrix)를 통해 어떤 영역에서 경쟁사가 우위를 점하고 있는지 직관적으로 보여줍니다.예를 들어, LLM에게 "사용자 온보딩 구축 방법을 알려줘. 상호작용 요소가 많이 들어가면 좋겠어"라고 물었을 때, 경쟁사인 Pendo는 1위로 등장하는 반면 Amplitude는 마지막 순위에 그쳤습니다. 이는 Pendo가 해당 기능으로 더 강하게 인식되고 있음을 보여주는 데이터입니다. 그렇다면, 경쟁사와의 격차를 줄이기 위해 어떤 콘텐츠에 집중해야 할지 명확하게 전략을 설정할 수 있는 것이죠. 이처럼 구체적인 데이터는 막연한 불안감을 실행 가능한 인사이트로 전환합니다. 3. AI 언급부터 실제 '매출'까지 모든 과정을 연결AI Visibility의 가장 강력한 차별점은 독립적인 도구가 아니라 Amplitude 분석 플랫폼에 완벽하게 통합되어 있다는 것입니다. 이는 AI에서의 브랜드 노출도를 실제 비즈니스 성과와 직접 연결할 수 있다는 것을 의미하죠. 다른 AEO 도구가 단순히 노출 횟수만 보여주는 반면, AI Visibility는 한 걸음 더 나아갑니다.AI Visibility와 Session Replay를 결합하면, AI 채팅에서 유입된 사용자의 실제 세션을 영상처럼 재생해볼 수 있으며, AI Visibility와 Activation 기능을 결합하면, AI 유입 코호트를 만들어 리타겟팅 캠페인을 진행할 수 있습니다. 즉, "AI 노출도를 높이는 노력이 실제 매출 증대로 이어졌는가?"라는 핵심 질문에 명확한 데이터로 답하고 마케팅 활동의 ROI를 투명하게 증명할 수 있게 되는 것입니다.AI Visibility 활용하기AI Visibility는 브랜드가 AI 환경에서 성공적인 고객 확보 플랫폼을 구축할 수 있도록 돕는 세 가지 핵심 단계를 제공합니다.Step 1: AI의 브랜드 언급 파악하기(Analyze)AI Visibility는 브랜드를 언급하는 프롬프트의 백분율로 표시되는 AI 가시성 점수를 정량화합니다. 가령, '제품 분석 도구 추천'과 같은 프롬프트를 입력하면 Amplitude는 75%의 확률로 언급되었습니다.가시성 점수 및 경쟁사 비교 확인: 수백 개의 프롬프트에서 AI 가시성 점수를 정량화하고, 주요 경쟁사 대비 브랜드 노출 순위와 점유율을 헤드투헤드(head-to-head) 방식으로 비교합니다. 경쟁사 대비 약점을 식별할 수 있습니다.프롬프트 및 소스 분석: AI가 우리 브랜드를 추천하는지, 혹은 비추천하는지 감정을 모니터링하고(출시 예정 기능), LLM이 응답을 생성할 때 인용한 외부 웹사이트 소스를 검토합니다. 이 기능을 활용하면 경쟁사를 언급하지만 우리 브랜드는 언급하지 않는 페이지를 식별하여, 명확한 콘텐츠 전략을 수립할 수 있습니다.약점 영역 식별: 최근에 출시되어, LLM이 아직 인지하지 못한 주제, 기능들을 식별하여 마케팅 콘텐츠를 보강할 필요성을 알 수 있습니다.Step 2: 필요한 조치 파악하기(Action)점수를 아는 것만으로는 충분하지 않습니다. AI Visibility는 인사이트를 행동으로 전환하는 기능을 제공합니다 (일부 기능은 출시 예정)맞춤형 개선 권고 받기: AI 응답에서 경쟁사가 우위를 점하는 주제를 파악하고, 격차를 줄이기 위한 맞춤형 권장 사항을 제공받습니다.콘텐츠 시뮬레이션 및 생성: 웹사이트에 변경 사항을 적용하기 전에 시뮬레이션 기능을 통해 변경 사항을 테스트하고 LLM이 어떻게 반응하는지 몇 분 안에 확인할 수 있습니다. 또한, 트래픽 데이터를 참조하여 고품질 콘텐츠를 생성하는 기능도 제공합니다.Step 3: 비즈니스 성과와 연결(Accelerate)AI Visibility는 단순한 검색 분석 도구가 아닙니다. Amplitude 플랫폼의 일부로서, AI 검색 성과를 실제 고객 행동 데이터와 연결합니다.트래픽 및 전환 추적: AI를 통해 유입된 실제 사용자 트래픽 데이터를 추적하고, 이러한 AI 유입 방문자가 퍼널, 여정, 코호트 내에서 어떻게 행동하는지 측정합니다.ROI 입증: AI 검색에서 노출 개선이 트래픽 증가와 전환 경로 분석으로 이어지는지 확인하여, 명확한 수익 지표로 객관적 ROI를 입증할 수 있습니다.플랫폼 연동 활용: 분석, 세션 리플레이, 실험, 활성화와 같은 다른 도구와 연결하여, AI 검색에서 유입된 사용자 세션을 확인하거나, AI 유입 코호트를 구축하여 타겟 캠페인을 실행할 수 있습니다.지금 바로 시작하기AI 검색은 더 이상 미래의 트렌드가 아닙니다. 이미 새로운 메인 채널이 되었습니다. 빠르게 움직일 수록 초기에 우위를 점할 수 있습니다.지금 바로 무료로 AI Visibility를 사용해보고, AI 응답에서 경쟁사를 앞질러 보세요.콘텐츠 더 읽어보기블로그: Braze MCP 서버: AI로 Braze를 빠르고 안전하게 분석하는 방법블로그: 대화만으로 데이터 분석 끝? Amplitude MCP프리미엄가이드: AI를 활용한 금융 개인화 가이드북
[💡B2B 마케팅] ABM(타겟 기업 기반 마케팅) 통합
B2B(Business to Business, 기업간 거래) 세계에서 제가 가장 좋아하는 잠재 고객 발굴 기법 중 하나는 어카운트 기반 마케팅(ABM: Account based Marketing)입니다. ABM에 익숙하지 않은 경우라면, 적합한 기술 솔루션을 활용하여 자사의 제품이나 서비스에 관심이 있을 수 있는 기업을 식별할 수도 있습니다. 대부분의 B2B 구매자는 전화를 걸거나 웹사이트의 리드 양식을 작성하기 전에 많은 조사를 하기 때문에 잠재적인 고객을 파악하는 것이 필수적입니다.ABM에는 여러 방법이 있지만 이 게시물에서는 IP 주소 조회를 사용하여 어떤 기업이 귀사의 웹사이트를 보고 있는지 식별하는 기술에 중점을 둘 것입니다. ABM 플랫폼으로는 6sense, Demandbase, KickFire 등 다양한 벤더사가 있으며, 이 중 Amplitude(앰플리튜드)는 기업명, 직원 수, 산업군, 수익 및 기타 여러 데이터 포인트를 제공하는 6sense를 사용합니다. 이러한 기업 관련 데이터는 ABM 벤더가 방대한 데이터베이스에서 수집하고 유료로 JavaScript 태그를 통해 고객과 실시간으로 공유합니다. ABM 플랫폼은 일반적으로 회사 VPN 또는 네트워크에 있을 때만 사용자를 식별할 수 있으므로 ABM 데이터가 존재하지 않는 경우가 많습니다.이러한 ABM 데이터 포인트를 Amplitude(앰플리튜드)에 통합하는 방법을 소개하고 여러분의 잠재 고객에 대해 자세히 알아보겠습니다. 아래 예제에서는 6sense를 사용했지만, 다른 ABM 플랫폼에도 동일한 원칙이 적용된다는 것을 참고해 주십시오. 어떻게 작동하나요?높은 수준에서의 통합은 6sense 데이터를 사용자 및 이벤트 속성으로 포함하는 각 페이지 로드에서 Amplitude(앰플리튜드)에 새 이벤트를 전송하는 방식으로 작동합니다. 정보가 Amplitude(앰플리튜드) 속성에 있으면 세그멘테이션 리포트, 코호트 및 기타 모든 Amplitude(앰플리튜드) 리포트에서 다른 사용자 속성과 마찬가지로 사용할 수 있습니다. Amplitude(앰플리튜드)에서 이 새로운 ABM 이벤트를 "비활성 사용자" 이벤트로 표시하여, 리포트에 활성 사용자 비율이 과도하게 높게 표시되지 않도록 설정할 수 있습니다. 자세한 설정 방법은 본 게시물의 마지막 섹션을 참조하세요.이 Amplitude(앰플리튜드)의 ABM 통합을 통해 어떤 궁금증에 대한 답변을 확인할 수 있는지 지금부터 살펴보겠습니다. 어떤 기업에서 우리 웹사이트를 보고(view) 있나요?어떤 기업이 우리 웹사이트를 방문하는지 확인하는 것부터 시작하겠습니다. 이를 위해 6sense 기업 사명으로 분류된 새로운 6sense 보기 이벤트를 표시하는 데이터 테이블을 생성할 수 있습니다. 제 경우에는 제가 속한 앰플리튜드와 ABM 도구에 기업 이름이 없는 경우를 필터링하겠습니다.이 정보는 영업 및 마케팅 팀에서, 자사의 제품 및 서비스에 관심을 가질 가능성이 많지만 현재는 관심이 없는 기업을 식별하는 데 도움이 될 수 있습니다. 이 데이터가 Amplitude(앰플리튜드)에 있으면 Salesforce와 같은 CRM 툴로 전송하거나 Slack으로 라우팅하여 추가적인 가시성을 얻을 수 있습니다. 각 기업에서 어떤 콘텐츠를 확인했나요?다음으로, 여러분은 각 기업에서 여러분의 웹사이트에 방문하여 무엇을 보았는지 궁금할 것입니다. 다른 분석을 추가하여 이 정보를 확인할 수 있습니다:상기 이미지에서 Accenture가 확인한 페이지 리스트를 확인할 수 있습니다. B2B 기업의 영업 담당자는 위와 같이 각 기업에 대한 리포트를 필터링하여, 각 기업별로 자사의 제품 및 서비스에 얼마나 관심이 있는지, 어떤 주제에 관심이 있는지를 확인할 수 있습니다. 이 정보는 잠재 고객에게 대화를 유도하는 데 도움이 될 수 있습니다. 물론 웹사이트에 로그인을 하지 않았기 때문에 이 페이지를 본 사람이 누구인지 정확히 알 수는 없지만, 여전히 잠재 고객 조사에 유용한 정보가 됩니다.더 많은 정보를 확인하고 싶으시다면, 6sense City별로 데이터를 분류한 다음 제목별로 콘텐츠를 확인할 수 있습니다. 본 글에서는 시드니에 거주하는 Accenture 직원들을 분석하여 어떤 콘텐츠를 읽었는지 확인해 보겠습니다.어떤 기업이 구매를 고려하고 있을까요?B2B 세계에서는 가격 페이지가 중요합니다. 잠재 고객이 귀사 솔루션/서비스의 가격을 확인했다면, 이는 해당 기업이 솔루션/서비스 도입에 더 깊은 단계에 있음을 나타낼 수 있습니다. Amplitude(앰플리튜드) ABM 통합을 사용하면 웹 사이트에서 가격 페이지를 보고 있는 기업을 쉽게 확인할 수 있습니다. 어떤 기업이 이 주제에 관심을 가질까요?귀사의 마케팅 팀에서 내부 CRM 시스템에 있는 여러 타겟 기업에게 이메일을 보내려고 한다고 가정해 보겠습니다. 이메일 전환율은 본문의 내용이 수신자와 관련이 있을 때 가장 높습니다. Amplitude(앰플리튜드) ABM 통합을 사용하면 웹 페이지 또는 블로그 게시물에서 주제를 선택하고 해당 콘텐츠를 본 기업을 확인할 수 있습니다. 이 기업들은 그 주제에 대해 더 자세히 알아보는 데 관심이 있을 수 있습니다.이를 위해서는 특정 주제를 살펴보는 리포트를 생성한 다음, 6sense 기업별로 세분화하면 됩니다. 그런 다음 CRM 시스템에서 이 목록을 직접 선택하여 해당 주제에 대한 이메일을 수신할 타겟 이메일 주소를 결정할 수 있습니다. 다음은 이를 위해 생성할 수 있는 Amplitude(앰플리튜드) 리포트 유형입니다.여기에서 Amplitude(앰플리튜드)의 새로운 마케팅 분석 기능에 관심이 있는 상위 몇 개의 기업을 볼 수 있습니다. 그 다음 필요에 따라 이러한 기업 리스트를 내보내기(export) 할 수도 있습니다.어떤 업계에서 우리 웹사이트를 방문했을까요?만약 특정 산업군에 집중하기를 원한다면, 아래와 같이 자사 웹 사이트를 방문하는 업계를 확인할 수 있습니다.데이터 테이블에서 직접 새 차트를 열어 특정 업계에 대한 트렌드 그래프를 확인할 수도 있습니다.대어는 누구인가요?영업 담당자는 항상 큰 고객을 쫓고 싶어합니다. ABM 데이터를 분류하는 또 다른 기준은 ‘기업의 매출’입니다. 다음은 매출 규모에 따라 필터링된 보기로, 수십억 개의 기업을 대상으로 그룹화된 보기입니다.그런 다음 각 항목을 회사 이름으로도 분류할 수도 있습니다. 우리의 경쟁사는 무엇을 보고 있나요?ABM 통합으로 확인 가능한 또 다른 재미있는 사항은, 경쟁사가 귀사의 웹사이트에서 무엇을 보는지 알 수 있다는 점입니다. 타겟 기업의 활동을 보는 것과 동일한 접근 방식을 사용하여 확인할 수 있습니다.위의 경우 우리의 경쟁사는 Amplitude(앰플리튜드)에 입사 지원하거나 무료 평가판을 사용하는 것에 큰 관심이 있네요😆! 콘텐츠 개인화 (Personalization)ABM 통합에는 콘텐츠 개인화(Personalization)가 포함됩니다. Amplitude Experiment와 같은 실험/개인화 기능을 사용하는 경우, 방문자에 따라 표시되는 콘텐츠를 개인화할 수 있습니다. ABM 도구는 방문자의 산업군 정보를 제공하므로 해당 업계와 관련된 콘텐츠 또는 활용 사례를 보여줄 수 있습니다. 예를 들어 패스트 푸드 업계의 방문자에게는 QSR 활용 사례를 표시하고, ABM 회사 이름을 사용하여 회사 수준의 텍스트 개인화를 수행할 수도 있습니다.ABM 통합(Integration) 설정하기다음은 더 많은 정보를 원하는 분들을 위한 통합 설정 방법입니다.ABM 도구와 Amplitude(앰플리튜드)를 통합하는 첫 번째 단계는 ABM 벤더와 협력하여 데이터를 데이터 레이어로 보내는 것입니다. 구글 태그 관리자를 사용하고 있다고 가정해 보면, 벤더사에서 이 코드를 받아 필요한 데이터를 전송합니다.데이터가 데이터 레이어에 있으면 필요에 따라 태그 관리자를 구성한 다음 Amplitude(앰플리튜드) 태그를 수정하고, 이러한 데이터 값을 Amplitude(앰플리튜드) 속성에 삽입할 수 있습니다.그러면 다음과 같이 Amplitude(앰플리튜드)에 이벤트 및 속성으로 나타납니다.조직에서 비용 관리를 위해 Amplitude(앰플리튜드)로 전송되는 이벤트 수를 제한하려는 경우, ABM 제품에 조직의 데이터가 포함된 경우에만 이벤트를 전송하도록 태그 관리 시스템을 구성할 수 있습니다. 원하는 경우 귀사의 조직을 제외할 수도 있습니다. 이 두 가지 방법 모두 보고서 생성 시 수동으로 "None"과 귀사 조직의 값을 제외해야 할 필요가 없다는 추가적인 이점이 있습니다.
[FAQ] 구글 UA 종료 & GA4 전환에 대해 궁금한 모든 것
✒️ Adam Greco | Amplitude 프로덕트 에반젤리스트Adam Greco는 디지털 분석 업계의 리더입니다. 지난 20년 동안 수백 개 이상의 조직에 분석의 베스트 프랙티스를 조언했으며, 분석과 관련된 300개 이상의 블로그 글을 쓰고 책을 저술했습니다. Adam은 분석 컨퍼런스에서 자주 연사로 활동하며, Digital Analytics Association의 이사직을 역임했습니다.구글 애널리틱스(GA)는 무료 디지털 분석 제품이자 유비쿼터스 광고 플랫폼으로써 디지털 분석 시장에서 가장 큰 점유율을 차지하고 있습니다. 많은 Amplitude(앰플리튜드) 고객들은 Amplitude(앰플리튜드)와 구글 애널리틱스를 동시에 사용하고 있습니다. Amplitude(앰플리튜드)를 매우 효과적으로 활용하고 있는 고객조차 GA를 빈번하게 사용하고 있는데, 이는 GA와 구글의 광고 네트워크가 긴밀하고 밀접하게 연동되어 있는 시스템으로 디지털 광고 공간에서의 독점력이 있기 때문입니다.구글이 UA 제품 서비스를 종료한다는 것을 발표한 이후, Amplitude(앰플리튜드) 고객들의 질문이 끊이지 않고 있습니다. 저는 여러 차례 이 주제에 대해 고객들과 대화를 나눠왔고, 이번 포스팅에서는 그 중 몇가지 대중적이고 중요한 질문과 제가 답변했던 내용을 공개합니다.저와 이야기 나누었던 대부분의 고객은 구글의 최신 업데이트와 그 영향력에 대해 관심이 많았으나, 동시에 우려도 있었습니다. 그렇기 때문에 질문의 내용이 비판적인 경향이 있으며, 저는 GA 전문가가 아니기 때문에 그동안의 디지털 분석 경력을 바탕으로 고객으로부터 들은 주요 내용과 답변을 정리했음을 참고해 주십시오.본 포스팅에서는 GA4가 UA에 비해, 혹은 Amplitude(앰플리튜드)가 GA4에 비해 좋다, 좋지 않다를 평가하지 않습니다. GA를 사용하고 있는 Amplitude(앰플리튜드) 고객이, UA 종료 발표로 인해 일반적으로 거론되고 있는 질문에 대한 해답을 이해하는 데 목적을 두고 있습니다.구글은 왜 GA4로 전환할까요?디지털 분석 산업은 최근 몇 년간 많은 변화를 겪고 있습니다. 웹사이트와 모바일 애플리케이션의 영향력이 증가되면서 기존의 웹사이트 세션 및 페이지 뷰 중심의 분석 활용은 줄어들고 있습니다. 단일 페이지 애플리케이션과 멀티 플랫폼 활용 등으로 디지털 경험이 더욱 복잡해짐에 따라, 대부분의 기업에서는 보다 정확한 디지털 분석을 위해 이벤트 기반의 데이터 모델로 전환하고 있습니다.기존의 GA는 모바일 앱이나 이벤트 기반 분석을 위한 모델로 개발되지 않았기 때문에, 구글은 이를 보완하기 위해 모바일 앱과 이벤트 데이터를 베이스로 개발하는 Firebase를 인수했습니다. 인수 후에 구글은 GA 고객이 Firebase를 활용하여 모바일 앱 분석을 하도록 했으나, 모바일 앱과 이벤트 기반 모델의 인기가 높아짐에 따라 Firebase 플랫폼을 확장시키는 것으로 결정했습니다. (초기에는 ‘GA 앱 + 웹’ 이었으나 현재는 GA4가 되었습니다)GA4로 반드시 마이그레이션 해야하나요? 여기에는 무엇이 포함되나요?구글은 최신 공개된 GA4로 마이그레이션하는 것을 권고했습니다. 그러나 GA4로 마이그레이션하는 작업이 그리 간단하지는 않습니다. 기존과 전혀 다른 데이터 구조를 사용해야 하기 때문에, UA에서 GA4로 전환하는 것은 완전히 새로운 분석 솔루션으로 전환하는 것만큼이나 많은 작업이 소요됩니다. 예를 들어, 조직에서 GA를 통해 이커머스 추적을 사용하는 경우 마이그레이션을 위해 수행해야 하는 여러 특정 단계들이 있으며 이전 버전과의 호환성 문제가 발생 될 수 있습니다.제가 이야기 나눴던 일부 기업에서는 ‘현재 완료해야 할 작업이 많다면 GA를 그대로 사용하는게 합리적인지, 혹은 다른 솔루션 업체를 검토하는 것이 나은지’를 문의해왔습니다. 지금처럼 서비스가 종료되는 강제적인 조건에서는 해당 조직이 현재 얼마 만큼의 기술 투자를 받고 있는지 확인해 볼 수 있는 좋은 기회 이기도 합니다. 현재 많은 기업의 UA는 ‘autopilot’이라는 자동 조정 장치에 의해 구현 되고 있다고 들었습니다. 이 autopilot은 유용하지만 오랜 시간 업데이트 되지 않았기 때문에 실용적인 인사이트를 제공하지는 않았습니다.사용도가 낮은 환경으로 구현된 GA를 보완하기 위해서, GA4는 즉시 사용 가능한 새로운 기능들 (예: 아웃바운드 링크, 검색어 기능, 파일 다운로드, 등)로 구성되어 있습니다. 타 디지털 분석 제품들과 GA를 함께 활용하는 기능들이 새롭게 추가되어, GA4로 업그레이드를 한 뒤에 그 효과를 확인하는 기업이 많아질 것 입니다. 하지만 저는 이런 방안들이 기업에서 디지털 분석 프로그램 도입을 검토하는 기회가 되기를 바랍니다.대부분의 Amplitude(앰플리튜드) 고객들이 일정기간 GA도 함께 사용할 것으로 예측되고 있기 때문에, 우리의 목표는 GA 없이 Amplitude(앰플리튜드) 한 가지 만을 분석 솔루션으로 활용해도 충분히 업무에 활용 가능하다는 것을 뒷받침할 수 있는 제품 및 마케팅 활용 사례를 제공하는 것입니다.이전 GA 데이터는 어떻게 되나요?UA 종료 임박과 관련하여 많은 분들께서 가장 관심있어 하는 부분은 과거 데이터의 손실 여부입니다. 구글이 공시한 날짜를 고려해 보면, 많은 기업에서 즉시 조치를 취하지 않으면 전년 대비 데이터를 확인하지 못하게 될 것 이라는 우려가 있습니다. 대부분의 기업에서는 연도별 데이터 확보를 중요하게 생각하고 있으나 실제로 이를 사용하는 기업을 그렇게 많이 보지는 못했던 것 같습니다. 과거 데이터에 진정으로 관심을 갖고 있는 기업이라면 이미 내부 저장소에 분석 데이터를 보유하고 있을 것이므로, GA 종료 날짜가 다가온다고 해도 크게 혼란은 없을 것으로 예상됩니다.하지만 이 경우라도 이전 데이터를 보존하는 것이 조직에 중요한 경우, 안전을 위해 7월 1일 이전(UA 데이터 수집이 중지되기 1년 전) GA4 인스턴스에 중요 KPI를 추가하는 것이 좋습니다. 혹은 Amplitude(앰플리튜드)의 무료 GTM 템플릿(클라이언트 측 또는 서버 측)을 사용하여 데이터를 Amplitude(앰플리튜드)로 전송할 수도 있습니다. 벤더가 제시한 임의 날짜에 따라 단기적으로 결정하는 것보다는 장기적으로 어떤 플랫폼에 투자할 것인지를 검토하는 것이 더 좋습니다. 개인적인 견해로는 UA 종료 발표에 따른 사용자의 불안감을 고려해 볼 때, 구글이 결국에는 종료 날짜를 연장할 가능성이 크다고 생각합니다.GA4는 시장에서 사용될 준비가 되었나요?많은 분들께서 UA에서 가능했던 모든 기능을 GA4로 대체할 수 없다고 말합니다. 조금만 검색해보면 GA4의 단점을 적어놓은 트위터와 링크드인 게시물을 쉽게 찾을 수 있는데, 어떤 사람들은 GA4가 아직은 시장에서 사용되기에 완벽히 준비되지 않았다고 표현하기도 합니다.GA4가 UA에 비해 몇 가지 개선 사항이 있는 것처럼 보이지만 우려되는 점도 있습니다. 많은 분들의 의견을 통해 확인한 내용을 정리해보자면 다음과 같습니다.이전에는 즉시 사용 가능한 리포트가 여러 형태로 제공되었다면, GA4에서는 탐색 리포팅 인터페이스를 사용하는 것으로 바뀝니다. 이 새로운 인터페이스 구성은 궁극적으로는 보다 강력한 리포팅 기능을 제공하지만, 이전 UA 사용자(특히 초보자)는 사용이 어려워 리포트를 익히는 데 별도의 트레이닝이 필요해 보입니다.GA4에서 문제가 될 수 있는 부분은 디멘션 및 디멘션 문자 길이에 대한 제한이 있다는 점입니다. UA 고객이 GA4에서 사용 가능한 것보다 더 많은 디멘션을 활용했을 경우도 있을 수 있습니다. 제 경우에는 고객이 우선 순위를 지정할 수 있도록 하는 것을 선호하는 편이지만, 대규모로 구현을 해야하는 고객에게는 결국 문제가 될 수 있습니다.GA4에서 한개의 디멘션에 포함된 디멘션 카디널리티가 다른 디멘션에 영향을 줄 수 있는 상황이 발생할 수 있습니다. (표준 보고서 조건에서)표준 속성이 있는 경우 카디널리티가 높은 측정 기준을 생성하지 마십시오. 카디널리티가 높은 측정 기준은 일별 고유 값이 500개를 초과하는 측정 기준입니다. 이 측정 기준은 리포트에 부정적인 영향을 미칠 수 있으며, 데이터가 (기타)행에 집계될 수 있습니다. 예를 들어 사용자 ID 와 같은 높은 카디널리티 측정 기준의 경우(즉, 각 고유 사용자에 대한 ID를 수집하려는 경우)에는 User-ID 기능 을 사용합니다.카디널리티- 카디널리티는 측정 기준에 할당된 고유한 값의 개수를 나타냅니다.- 일부 측정 기준은 고유한 값의 개수가 고정되어 있습니다(예: *기기* - 3: 데스크톱, 태블릿, 모바일). 반면 하루에 고유한 값이 500개를 초과하는 측정 기준은 카디널리티가 높은 측정기준으로 간주됩니다.- 카디널리티가 높은 측정 기준이 있으면 리포트의 행 수가 증가하므로 리포트가 행 한도에 도달하여 데이터가 [(다른) 행] 아래에 집계될 가능성이 커집니다. (https://support.google.com/analytics/answer/9309767)GA4에서는 측정 기준 카티널리티로 인해 표준 리포트와 탐색 리포트에 서로 다른 측정 항목 합계가 표시되는 상황이 있을 수 있습니다.GA4는 BigQuery와 더 많이 통합 되어 고급 사용자에게 유용할 수 있지만, 일반 사용자는 고급 사용자 인터페이스를 새로 배워야 합니다.BigQuery로 GA4 데이터 내보내기는 하루에 100만 이벤트로 제한되며, 이로 인해 그동안 ‘무료’ 분석을 사용해 온 많은 조직이 구글에 비용을 지불하게 됩니다.GA4 ‘무료’ 버전의 데이터 보존 기간은 최대 14개월 입니다. 즉, BigQuery에 보존하려는 모든 데이터를 저장해야 하며, 장기간 리포트에 탐색 보고 인터페이스를 사용 할 수 없습니다.현재 GA4에는 연계된 써드파티 솔루션이 거의 없습니다.유럽내에서 구글의 개인정보 보호 문제는 어떤가요?유럽에서는 GA의 합법성과 관련된 법안이 논의되고 있습니다. 대부분 사소한 문제이지만, 광고 네트워크 및 다국적 기업과 연결된 디지털 분석 솔루션에서는 몇 가지 중대한 이슈가 확인되고 있습니다. 저는 고객이 결정할 수 없는 외부적인 요인(법적 판결)으로 인해 디지털 자산에 대한 모든 가시성을 잃게 될 수도 있다는 점을 우려하고 있습니다. 그리고 이 두려움이 결코 실현되지 않기를 바랍니다.개인 정보 문제의 위험을 증가시키는 GA의 특정 부분이 있습니다. 예를 들면, GA가 익명 방문자를 식별하고 데이터를 수집하는데 사용하는 메커니즘인 구글 시그널 데이터 입니다. 구글 시그널을 사용하면 다음의 두 가지 작업을 수행할 수 있습니다. 다른 솔루션과는 차별화되는, 오직 GA에서만 가능한 작업입니다.광고 네트워크를 활용하여 사용자(익명 사용자 포함)의 다양한 기기에서 추적 수행연령, 성별 및 광고 관심 분야와 같은 사용자에 대한 인구 통계 정보 추가구글 시그널은 대부분의 사람들이 최소 한 가지의 구글 제품 (예: 크롬, 지메일)을 사용하면서 ‘광고 개인화’ 기능을 끄지 않는다는 사실을 이용하여 이 작업을 수행합니다. 구글은 방대한 광고 네트워크를 보유 하고 있기 때문에 사용자의 인구 통계 및 관심 정보를 수집하고 이를 GA와 익명으로 공유 하게 됩니다. 예를 들어, 한 중년 여성이 지메일을 사용한다면, GA는 구글 계정에서 이 중년 여성의 인구 통계적 정보와 관심 분야를 확인할 수 있습니다. 저 또한 한 명의 디지털 분석가로서 추가적인 인구 통계적 정보와 관심 정보를 얻는 것은 좋지만, 사용자는 구글의 광고 네트워크가 자신에 대한 정보를 GA에 제공하고 있다는 사실을 깨닫지 못할 가능성이 높습니다.구글 시그널은 GA 관리자가 해제할 수 있지만, GA를 사용하는 대부분의 조직에서는 이 기능을 사용하도록 설정하고 있으며, 구글 계정 내에서 광고 개인화의 비활성화에 대해 아는 사용자는 거의 없습니다. 또한 현재 GA는 조직이 유저 ID와 기기 ID만 사용할 수 있는 옵션을 제공하는 대신, 구글 시그널 데이터를 포함하면 유저 ID로 유저(사용자)를 추적할 수 있도록 허용하고 있습니다.현재는 구글 시그널 정보가 모든 동의 요구 사항을 준수하는 경우 GDPR과 함께 사용되어도 적합하다고 간주되지만, 구글 시그널은 GDPR의 원칙에 어긋나므로 GA에서 구글 시그널 기능을 제거하거나 ‘옵트인’을 선택하게 하도록 EU에서 강제할 수도 있습니다. 이렇게 될 경우 GA의 장점 중 일부를 사용하지 못하게 됩니다.구글의 전체 비즈니스에서 분석(Analytics)은 얼마나 중요한가요?저와 이야기를 나눴던 많은 분들은 강력하고, 때로는 무료로 제공되는 GA의 디지털 분석 제품에 항상 액세스 할 수 있는 환경을 경험해왔습니다. 저는 이들에게, GA가 처음에는 구글의 디지털 광고 캠페인의 성과 측정에 도움을 주기 위해 인수(Urchin)되어 무료로 제공되었다는 점을 강조하고 싶습니다. 구글은 기업이 디지털 광고에 더 많은 비용을 지출하도록 하는 데 데이터가 핵심 열쇠라는 것을 알고 있습니다. GA는 구글 광고와 밀접하게 연결되어 있습니다.기업에서 향후 10년 동안 사용할 디지털 분석 플랫폼을 고려할 때, 구글의 광고 비즈니스가 분석 비즈니스보다 훨씬 더 중요하다는 사실을 인식하는 것이 중요합니다. 디지털 광고가 (개인정보 보호 문제로 인해) 사라지거나 크게 줄어들 경우에도 구글은 GA 무료 버전 혹은 지원을 위해 계속해서 자금을 투자할까요? 저는 GA 서버를 호스팅하고 GA 제품을 지원하는 데 많은 비용이 들어간다고 확신합니다. 지금처럼 광고가 캐시 카우로 큰 자금을 생산하고 있을 때는 문제가 되지 않습니다. 하지만 광고비가 고갈되면 어떻게 될까요? 그리고 GA가 많은 법적 이슈를 일으켜 구글의 핵심인 광고 비즈니스에 영향을 주기 시작했다면 어떻게 될까요? 분석 제품으로 인해 광고 수익을 잃게 될 것이라는 우려를 하게 된다면 분석 제품은 눈엣가시로 전락할 수 있습니다. 구글의 모든 개인 정보 보호 및 소송 문제를 감안해보면 분석 제품이 구글의 발목을 잡게 될 수도 있습니다. 미래를 예측하기는 어렵지만, 저와 이야기하는 일부 조직에서는 광고와 분석이 주요 비즈니스 모델인 기업(벤더)에 의존하는 것이 언젠가는 다시 그들을 괴롭힐 수 있다는 우려를 나타내고 있습니다.또한 현재 구글에는 GA의 서비스 규모에 맞게 다른 분석 솔루션 벤더사보다 많은 수의 엔지니어가 있지만, 언젠가는 구글이라는 거대한 기업 내에서 분석 제품이 사라지게 될 수도 있습니다. 일부의 말에 따르면, 최근에는 몇 년 전과 비교하여 기능 요청과 버그 보고가 거의 이행되지 않았다고 합니다. 반면, 분석 제품만을 유일하게 제공하는 벤더사와 협력할 때는 제품을 개발하고 개선하려는 의지가 높다는 이점을 확인할 수 있습니다.구글의 지원 및 서비스 방식에는 어떤 변화가 있을까요?저와 이야기를 나눈 기업 중 일부는 구글의 직접적인 지원을 원한다고 말했습니다. 전통적으로 GA 고객은 구글과 직접적인 상호 작용이 많지 않았습니다. 오히려 구글의 대행사 또는 파트너사와 협력하는 것이 일반적이었습니다. GA에 전문 역량을 갖춘 열정적인 대행사와 컨설턴트가 있다는 것에는 의심할 여지가 없습니다. 그러나 때로는 문제가 발생했을 때 솔루션 공급 기업인 구글과 직접 논의하는 것이 필요할 수 있습니다. 일부는 GA4에 구글의 직접적인 지원이 포함될 지 궁금해 했습니다. 하지만 아직까지는 이 문제에 대해 새로운 것을 보지 못했고, GA4도 과거와 같은 방식으로 지원될 것으로 예상됩니다.GA4는 데이터 품질과 거버넌스를 어떻게 지원하나요?오늘날 대부분의 GA 고객은 데이터 분류 체계(텍소노미) 리스트를 정리한 구글 시트에서 실행을 관리합니다. 같은 관점에서 Amplitude(앰플리튜드) 고객들이 Amplitude(앰플리튜드)에 대해 만족하는 것 중 하나는, Amplitude(앰플리튜드)가 데이터 거버넌스에 많은 투자를 하고 진심으로 연구하고 있다는 점입니다. 그리고 저는 고객들이 GA4도 동일한 기능을 갖추기를 원한다고 생각합니다.이벤트 기반 분석 플랫폼은 고객 행동을 추적하고 분석하는 데 확실히 더 강력하지만, 그만큼 데이터 관리에 더 많은 투자를 해야합니다. 데이터 거버넌스를 위한 강력한 툴킷은 반드시 필요하며, 이는 분석 실행을 문서화하는 구글 시트로는 충분하지 않습니다.최적의 의사 결정을 이끄는 훌륭한 인사이트를 확인하려면, 이벤트를 시간에 따라 계획하거나 도구화 시키고, 검증, 조직화, 변형 및 여러 방면에서 관찰해야 합니다. 훌륭한 데이터 거버넌스 도구가 없다면 신뢰할 수 없는 데이터와 거듭되는 재계측으로 인해 장기적으로는 비용이 높아집니다. 이러한 악순환은 대부분의 분석 작업이 실패하는 이유이기도 합니다.보다 높은 데이터 품질, 엔지니어의 만족, 데이터 플랫폼 비용의 절감을 위해 고객은 GA4(적어도 GA360)가 궁극적으로 다음 기능들을 제공하기를 바라고 있습니다플래닝 트래킹 기본 제공(built-in)이벤트 유효성 확인을 위한 관찰 검사개발자 우선 환경 (Jira 연동, 명령줄, SDK, 분기)보다 강력한 데이터 속성 변환 유형그러나 GA4가 데이터 거버넌스 영역에 얼마나 많은 투자를 할지는 조금 더 지켜봐야 할 부분입니다.GA4가 제공하는 데이터 및 마케팅 통합 기능은 무엇인가요?오늘날의 기업에서는 데이터 웨어하우스, CDP, 이메일 인게이지먼트 및 메시징 플랫폼, 광고 네트워크, 어트리뷰션 및 위치 인텔리전스 툴, 실험 플랫폼 등 많은 도구를 사용합니다. 현재 GA4는 BigQuery, 세일즈포스 마케팅 클라우드와 연동되어 있으나, 이를 위해서는 백엔드 개발 및 API 작업이 필요합니다. 단일 고객 행동 프로파일, 고객 인게이지먼트 및 여정 전체 보기, 다양한 채널과 도구에서 데이터에 조치를 취할 수 있도록 스택을 통합하려는 경우, GA4에는 몇 가지 제한 사항이 있을 수 있습니다. 점점 더 많은 기업에서 디지털 분석 솔루션과 Snowflake, Amazon S3, BigQuery 등과 같은 데이터 웨어하우스를 함께 활용하고 있으나, 현재 GA에서는 BigQuery만 즉시 사용 가능하며 다른 데이터 웨어하우스와 연동하려면 기업에서 추가 개발이 필요합니다.마치며초반에 언급했듯이 UA 종료 및 GA4와 관련된 수 많은 질문과 알려지지 않은 내용이 있었습니다. Amplitude(앰플리튜드)를 사용하는 고객도 다른 조직과 마찬가지로 이에 영향을 받습니다. 바라건대 여러분이 여기에 제공된 정보를 통해 그동안 지녔던 수 많은 궁금증에 대한 답을 얻으셨으면 좋겠습니다. 주요 기술이 변화함에 따라 많은 걱정이 있으실 것으로 생각됩니다. GA는 보편적으로 사용되던 서비스이므로 그만큼 더 많은 질문과 우려가 있는 것이 당연합니다. 앞으로 많은 사용자 커뮤니티에서, (저보다 GA에 대해 많이 알고 있는) GA전문가들이 이러한 내용을 다루면서 더 나은 답을 찾게 될 것이라고 확신 합니다. 아마 대부분의 기업에서 큰 혼란은 발생하지 않겠지만, 기업에서 사용하는 모든 기술을 지속적으로 재평가하고 앞으로의 최선책을 결정하는 일은 무엇보다 중요하다고 말씀드리고 싶습니다.
마케팅 퍼널(Funnel) 의미와 분석 방법🔍
퍼널 분석(Funnel Analysis)이란?퍼널 분석(Funnel Analysis)이란, 전환 지점에 이르기까지의 일련의 이벤트를 분석하는 방법을 말합니다. 제품, 웹사이트, 이메일 등 모든 종류의 디지털 접점에서 퍼널 분석을 할 수 있습니다. 퍼널 분석의 목적은 고객여정에서 중요한 이벤트를 정확히 파악하여, 테스트를 수행하고 사용자 경험을 개선하며 전환율을 높이는 것입니다.예를 들어, 이메일을 통해 무료 체험 이벤트를 홍보하고 무료 체험 사용자들이 최종적으로 유로 전환을 하길 원하는 캠페인이라면, 그 퍼널을 다음과 같이 구성될 것입니다.1단계: 잠재 고객이 이메일을 열고 무료 체험 제안을 발견2단계: 무료 체험을 신청하기 위해 CTA 버튼을 클릭3단계: 계정을 만들고 제품을 무료로 사용4단계: 무료 체험 기간이 종료된 후 잠재 고객이 유료 고객으로 전환퍼널 분석이 필요한 이유퍼널 분석은 왜 필요할까요? 광고에 혹해서 링크를 클릭하였는데 회원가입 절차가 복잡해서 사용을 종료한 경험, 괜찮아 보이는 앱을 설치했는데 구성이 복잡해서 금방 삭제한 경험, 한 번씩은 있을 것입니다. 고객이나 사용자가 디지털 경로를 따라가면서 원하는 결과에 도달하지 못하는 것은 굉장히 흔한 일입니다.이를 해결하기 위해 아무리 고객의 경험을 이해하려 해보아도 분명히 한계가 있습니다. 이때 퍼널 분석을 통해 각 단계를 통계적으로 들여다봄으로써 이러한 사용자의 마찰 지점을 효과적으로 개선할 수 있는 것입니다. 퍼널의 각 단계 사이에는 여러 가지 방해 요소나 장애물이 발생할 수 있으며, 무엇이 효과가 있고 무엇이 그렇지 않은지를 알려줄 수 있는 행동 패턴이 존재할 가능성이 큽니다.앞서 살펴본 예시에서 유독 3단계에서 이탈이 많다면, 그 원인이 무엇인지 행동 패턴에서 찾아볼 수 있을 것입니다. 가령 모바일 환경에서 회원가입 로딩 속도가 유독 느려 사용자가 회원가입을 쉽게 포기하기 때문일 수 있죠. 이런 경우 PC 사용자의 퍼널과 모바일 사용자의 퍼널을 비교하여 사실 여부를 쉽게 확인할 수 있을 것입니다. 이 문제를 개선하여 모바일 전환율이 PC 전환율만큼 높아진다면, 얼마나 많은 수익을 기대할 수 있을지 예상하고, 모바일 환경을 개선하는 투자 비용 대비 효과를 비교할 수 있을 것입니다. 즉, 우리가 늘 강조하는 데이터 기반의 의사결정을 수행하고 전환율을 개선할 수 있는 것입니다.정리하자면, 퍼널 분석은 다음과 같은 목적으로 사용할 수 있습니다:전환율 개선: 퍼널 분석을 통해 사용자가 최종 목적지에 도달하지 못하게 하는 요인을 파악하여, 해결책을 수립하고 전환율을 개선할 수 있습니다. 여기서 최종 목적지는 "가입" 버튼을 클릭하거나 PDF 다운로드 등 상황에 맞춰 다양하게 설정할 수 있습니다.퍼널 간소화: 웹사이트, 모바일 앱, 이메일, 대시보드 등 다양한 디지털 접점에서 퍼널을 만들 수 있을 것이고 이를 합치면 전체적인 고객 여정이 됩니다. 퍼널 분석은 이러한 각 여정이 서로 어떻게 연결되는지를 전체적인 관점에서 살펴보고 필요없거나 중복되는 부분을 찾아 간소화 할 수 있습니다.유입과 리텐션의 통합 : 보통 마케팅 팀은 신규 고객을 유입하는 데 집중하는 반면, 제품 팀은 그 고객을 유지하는 데 중점을 둡니다. 퍼널 분석은 두 팀이 데이터를 공유하고 인사이트를 교류할 수 있는 기회를 제공합니다.퍼널 분석 4가지 방법퍼널 데이터를 해석하고 활용하는 방식을 비즈니스와 산업에 따라 달라지지만, 대표적으로 다음 4가지의 방법이 있습니다.전환 분석퍼널을 분석하는 가장 기본적인 방법입니다. 각 단계에서 전환한 사용자의 수를 측정합니다. 주로 막대 그래프로 시각화하여 표현하죠. 전환 분석 방식의 핵심은 문제가 발생하였을 때 이를 빠르게 확인하고 조치를 취하는 것입니다. 퍼널의 한 단계에서 사용자 이탈이 갑자기 심해진다면, 그 부분을 빠르게 점검해야 합니다.기간에 따른 전환 분석기간에 따른 전환 분석은 특정 날짜에 퍼널에 진입한 사용자의 전환율을 확인하는 분석법입니다. 사용자가 퍼널을 완료하지 않아도 분석 대상에 계속 포함하는 것이지요. 휴일이나 특별 이벤트 동안 퍼널이 어떻게 자동하는지 이해하는 데 유용합니다. 전환 시간 분석각 사용자가 각 단계를 클릭하는 데 얼마나 시간이 걸리는지는 파악하여, 퍼널이 건강하게 작동하고 있는지 확인할 수 있습니다. 적절한 전환 시간은 비즈니스에 따라 다르기 때문에, 적절한 기준을 세우고 과거 데이터를 비교하여 설정할 필요가 있습니다. 가령, 패스트푸드 배달 앱과 세금 관련 서비스 앱의 기대되는 전환 시간은 완전히 다를 것입니다. 빈도 분석사용자가 퍼널의 다음 단계로 이동하기 전에 특정 행동을 몇 번이나 수행하는지 측정하는 분석 방법입니다. 빈도를 측정함으로써 사용자가 해당 퍼널 내에서 무엇을 얼마나 자주 하는지 파악할 수 있습니다. 가령, 장바구니 물건을 결제하기 전에 이 물건이 최저가가 맞는지 확인하기 위해 검색창에 들어가는 행동을 많이 보인다면, 장바구니 안에서 해당 물품이 최저가임을 나타내주는 메시지를 표시하여, 사용자가 더 간편하게 쇼핑 여정을 마칠 수 있도록 유도할 수 있을 것입니다.이 외에도 비즈니스나 상황에 최적화된 독특한 관점으로 접근하여 퍼널 분석을 진행할 수 있습니다. 위의 기본적인 퍼널 분석 방법에 익숙해진다면, 더 창의적인 방법으로 문제를 해결해보세요.퍼널 분석 도구퍼널 분석을 위해선 관련된 도구가 필수로 필요합니다. 대표적인 퍼널 분석 도구인 Amplitude는 단순 페이지 뷰나 세션뿐만 아니라 모든 종류의 이벤트나 사용자 행동을 측정하고 추적할 수 있습니다. 퍼널 이벤트의 순서를 지정하고 행동 코호트를 세분화하며, 특정 전환 기간을 설정할 수도 있죠.다음은 퍼널 분석 도구를 선택할 때, 필수로 체크해야하는 요소입니다고객 여정 전반에 걸쳐 사용자 행동을 시각화하고, 측정하며, 이해할 수 있어야 합니다. 이때 사용자를 코호트로 분류하여 확인할 수 있는 것이 좋습니다.퍼널 상에서 문제점이 발생했을 때, 이를 빠르게 감지하고 알림을 보낼 수 있어야 합니다.제품 개선, 개인화, 원활한 고객 여정 구축를 위한 추가적인 데이터 연계가 가능해야 합니다.콘텐츠 더 읽어보기전환율(Conversion Rate)이란?🔍(feat. 전환율 계산 및 개선법)퍼널(Funnel) 분석과 사용 사례구매 전환율을 높이는 6가지 전략





