앰플리튜드
Amplitude(앰플리튜드)의 프로덕트 마케팅 지표 측정 팁! 좋은 질문을 만드는 방법
Team MAXONOMY ・ 2021.05.12

좋은 질문은 여러분이 원하는 항목을 정확히 측정하고 인사이트를 발견할 수 있는 가능성을 높여줍니다. 잘 구성된 이벤트와 이벤트 속성은 데이터 혹은 자동 추적 솔루션을 능가하는 효과가 있습니다.
본 포스팅에서는 여러분의 팀에서 무엇을 측정해야 할지 더 나은 결정을 내릴 수 있도록 영향력있는 질문을 만드는 데 도움이 되는 몇가지 접근 방법을 자세히 공유하려고 합니다. 영향력 있는 질문을 만들기 위해서는 물론 연습이 필요하지만, 불가능한 일은 아닙니다.
시작하기에 앞서, 저희가 경험을 통해 깨달은 내용을 먼저 공유하려고 합니다.
‘어리석은’ 질문과 완전하지 않은 질문은 제외해야 하고, 무엇보다 서두르지 말아야 합니다. 일부는 질문의 내용을 브레인스토밍을 하는 것이 우스워 보이지 않을까 하는 생각에 도중에 중단해버리기도 합니다. 충분한 고민의 시간을 갖지 않고 서두르게 되면 겉핥기 식의 질문만 하게 될 가능성이 높습니다. 좋은 질문은 ‘좋지 않은’ 질문과 덜 중요한 질문을 바탕으로 고민한 결과에서 나옵니다. 큰 영향이 있는 좋은 질문을 하려면 이러한 노력의 과정을 여러번 거쳐야 합니다. 그러니 시간을 투자하십시오. 완전한 질문을 만들어야 합니다.
다시 본론으로 돌아가 이야기를 이어가겠습니다. 일반적으로 사람들은 ‘데이터 제공’과 관련하여 다음 세 가지 중 한 가지의 니즈가 있습니다.
- 결정이 필요한 건이 있고, 결정 이후에 그 내용을 알릴 수 있는 데이터가 필요합니다.
- 가정의 불확실성을 줄이고 싶습니다.
- 성과와 영향을 이해하고 싶습니다. 그리고 무엇인가 효과가 나오고 있는지 알고 싶습니다. 또한 어떤 것이 효과가 있거나 (혹은 효과가 없거나) 향후 효과가 있을 예정이라는 것을 (향후 효과가 없을 것이라는 것을) 증명하고 싶습니다.
결정에는 가정이 포함되기 때문에 두 개념은 연결되어야 합니다. 가정은 결정으로 이어집니다. 우리는 일반적으로 어떤 결정을 내리기 위해서 (아무것도 하지 않기로 결정하더라도) 무엇이 효과가 있는지 확인하길 원합니다.
그러나 질문을 유도할때는 결정과 가정을 나누는 것이 도움이 됩니다. 왜일까요? 사람들마다 각자 다른 관점에 끌리는 것 같습니다. 하나의 접근 방식만을 사용하는 것은 (예: 한 개의 캔버스만 사용하여 가정하는 경우) 팀에 제한을 주는 것처럼 느껴질 수 있습니다. 또한, 대부분의 팀에서 벤치마크와 ‘표준’ 매트릭스를 강조하고 있지만, 어떤 결정을 통보하고 어떤 가정을 검증하기를 원하는지 실제로 파악하는 데 어려움이 많습니다. 이것을 유연성이 더 많아졌다고 이해할 수는 없습니다.
다음으로 알게된 점은 문제 해결의 수준(레벨)이 중요하다는 것입니다. 질문을 브레인스토밍하고 정제하여 우선 순위를 정하는 것이 한 단계 (또는 두 단계) 수준을 오르내리는 데 도움이 됩니다. 개방형 질문은 보다 구체적인 질문을 유도하는데 도움이 됩니다. 또한 구체적인 질문은 개방형 질문을 유도하는데 도움이 됩니다. 이것이 왜 중요할까요? 이렇게 함으로써 질문이 보편적으로 모두에게 해당되는 내용인지, 일부만 타겟으로 하는 구체적인 내용인지의 여부에 관계없이 모든 사용자를 참여시킬 수 있습니다.
이 내용에 대한 보충 설명으로 아래의 이미지를 공유합니다. Miro에서 사용하는 실제 보드입니다.
이 테이블에는 결정, 가정, 성과 및 영향의 세 열이 있습니다. 특이성의 범위에 따라 각 열에 대한 샘플 질문 및 가정을 작성합니다. 예를 들어, 이 가정은 전체 비즈니스의 기반이 될 수도 있고 (‘수요가 10년 동안 증가할 것입니다’), 버튼 배치와 관련된 가정이 될 수도 있습니다 (‘이런 유형의 버튼은 항상 오른쪽에 있습니다’). 전체 전략의 효과나 소규모 작업 흐름의 효율성에 대해 확인하고자 할 수도 있습니다.
워밍업으로 브레인스토밍을 통해 각 열마다 세 가지 예시 문장을 적어봅시다.
- 결정 예시
- 가정 예시
- 효과가 있을까?(is-it-working) 형식의 질문 예시
이것을 약간 응용해보겠습니다. 매우 구체적인 예시 한 가지, 매우 광범위한 예시 한 가지 그리고 중간 정도의 특이성이 있는 예시 한 가지를 생각해 보십시오. 이는 준비 단계로, 운동 전에 스트레칭을 하는 것과 같습니다.
DIY 앱 구축업체와 키트 디자이너를 위한 제품 판매를 가정하여 다음과 같이 완성해 보았습니다.
‘자, 이제 결정, 가정 그리고 실행 질문의 항목 하나씩을 선택하여 자세히 살펴봅시다. 그리고 각각의 항목에 맞는 세 개의 하위 질문을 브레인스토밍해봅시다. 불확실성은 어디에서 줄여야 할까요? 어떤 질문이 (응답할 경우) 이 문제를 해결하는데 도움이 되나요? 해결까지는 불가능하더라도 최소한 해결할 수 있다는 자신감을 갖게 해줄까요?’
또한 다음 항목들도 선택해야 합니다 : 왜, 누가, 무엇을, 언제, 어디에서, 어떤 것을, 얼마나 많이, 어떻게, 얼마나 오래, 하는지, 해왔는지, 할 것인지, 해야 하는지, 있는지 등.
카테고리와 수준을 탐색한 다음 하위 질문을 브레인스토밍하는 이 두 단계 프로세스는 사람들이 더 폭넓게 생각하고 질문의 수준을 높이거나 낮출 수 있도록 합니다. 질문에 바로 뛰어드는 것 보다 훨씬 낫습니다.
여러분의 팀에 문제가 있거나 더 많은 연습이 필요할 경우, 아래 빈칸 채우기가 도움이 될 수 있습니다.
- 얼마나 많은 사용자가 지난 30일동안 ________ 했습니까?
- _____________ 경로에서 신규 사용자가 유입되는 경로는 어디입니까?
- _____________ 의 장기적인 리텐션에 _______________와 ______________가 영향을 미칩니까?
- _____________ 는 _____________에 비해 얼마나 더 잘 유지됩니까?
- _____________ 사용자가 ______________ 로 이동할 가능성이 더 높습니까?
- _____________ 당 평균 _____________ 수는 얼마입니까?
- 고객은 _____________ 이후 어디로 이동하며, 결국 _____________이 됩니까?
- _____________ 를 예측할 수 있는 고객의 고유한 행동은 무엇입니까?
- 언제 ____________ 우리가 반대로 ____________ 했습니까?
- 사람들이 실제로 ____________ 합니까? 아니면 단지 ____________ 합니까?
- 고객이 ____________ 를 시도할 때 언제/어디에서 문제가 발생합니까?
- _____________ 에 대한 우리의 노력이 ____________ 의 결과입니까?
- 우리가 발행한 것이 ____________ 의 원인입니까? 아니면 ____________ 입니까?
- 우리가 ____________ 하도록 하는 사소한 일이 있습니까?
- 우리는 ____________ 로 가는 방향에 있습니까?
이러한 활동은 질문을 브레인스토밍을 할 때 좀 더 확신을 갖게 합니다.
워크샵이 끝날 때쯤 우리는 많은 질문과 하위 질문을 얻게 되고, 어떤 질문이 가치있는 지도 어느정도 알게 됩니다. 또한 많은 것을 배울 수 있는 항목을 가치가 있다고 판단하고 우선순위를 두게 됩니다. 하지만 무엇보다 가장 중요한 것은 어떤 질문의 ‘등급’이 가치있는지를 알게 되었다는 것입니다. 즉, 가장 중요한 명사, 동사, 워크 플로우 및 목표도 배우게 되었습니다.
지금까지 설명드린 내용은 스마트 계측 접근법입니다. 물론 우리는 모든 것을 계측할 수는 없습니다(그렇게 해서도 안됩니다). 사용자의 모든 클릭을 기록해서도 안됩니다. 또한 모든 질문을 미리 예측할 수도 없습니다. 하지만 좋은 질문을 통해 인사이트를 발견하는 과정을 도구화할 수 있습니다.
좋은 질문은 여러분이 가야할 길을 인도하는 훌륭한 안내자가 될 수 있습니다. 꾸준한 연습을 통해 좋은 질문을 하는 방법을 터득하고 익숙해 지십시오.

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기
![[세션 스케치 | 올리브영] 행동 데이터로 고객을 보다, '올리브영의 데이터 리터러시 향상부터 서비스 개선까지' [세션 스케치 | 올리브영] 행동 데이터로 고객을 보다, '올리브영의 데이터 리터러시 향상부터 서비스 개선까지'](https://maxonomy-prd-pub-a-s3.s3.ap-northeast-2.amazonaws.com/upload/BoardThumbnail/40773/TMXNM2025_썸네일_T1_올리브영_블로그-002.webp)
[세션 스케치 | 올리브영] 행동 데이터로 고객을 보다, '올리브영의 데이터 리터러시 향상부터 서비스 개선까지'
고객의 '행동'속에 숨은 마음을 읽다 - 올리브영은 어떻게 데이터 문화를 혁신했을까?

Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법
개발 리소스 없이 클릭·페이지뷰 등 사용자 행동을 자동 수집해 빠른 분석과 최적화를 지원하는 Amplitude Autocapture 기능 소개

AI에 의존하는 인간, 인간을 필요로 하는 AI
AI가 변화시킨 일자리, 시장 구조, 마케팅의 한계와 기회까지 짚어보는 인사이트

MCP: AI 사용자 경험을 확장시켜줄 핵심 연결고리
오늘날 마케팅의 본질은 단순히 제품을 알리는 데 그치지 않습니다. 소비자의 기대치는 그 어느 때보다 높아졌고, 기업은 “고객을 위한 경험”을 제공해야 한다는 압박을 받고 있습니다. 이런 변화 속에서 AI는 중요한 조력자로 부상했지만, 아직까지는 많은 한계가 있는 것이 사실입니다. 가장 큰 이유는 아직까지 AI기술이 일부 플랫폼 속에서 폐쇄적인 형태로 존재하기 때문입니다. 뛰어난 AI 기술을 여기저기서 활용하고 싶지만 그렇지 못한다는 것이죠.이 한계를 뛰어넘게 만들기 위해 AI업계에서는 MCP라는 기술을 적용시키고 있습니다. CDP도 아니고 MCP란 것은 또 무엇일까요? 왜 등장했을까요? 🤔 이번 맥사이트픽 포스팅에서는 MCP가 무엇이며, 마케터에게 MCP를 왜 주목해야 하는지 알아보도록 하겠습니다.MCP란?MCP는 Model Context Protocol의 약자로 AI가 외부의 다양한 도구와 데이터 소스에 표준화된 방식으로 연결되도록 설계된 프로토콜 기술인데요. 쉽게 말해, 모델이 단순히 텍스트만 처리하는 게 아니라 “컨텍스트”를 확장해서 다양한 애플리케이션·데이터 소스·플러그인과 소통할 수 있게 해주는 통신 규칙입니다. 이는 단순한 기술 혁신을 넘어 마케터가 소비자 경험을 설계하는 방식 자체를 변화시키는 AI 경험 확장의 첫 단계가 될 수 있습니다.흔히들 MCP를 다음과 같이 비유하고 있습니다. MCP는 AI와 외부 세계를 연결하는 ‘공용 어댑터 와 같다. 지금까지는 각 AI와 도구를 연결하기 위해 개별 API 연동을 해야 했습니다. 마케터 입장에서 이는 시간이 많이 들고, 통합 범위에도 한계가 있었습니다. 그러나 MCP는 이 과정을 표준화해 AI가 여러 도구에 동일한 형식으로 접근할 수 있도록 합니다. 그렇다면 이런 시도로 인해 사용자들의 AI 경험에 어떤 변화가 생기게 되는 것일까요. 크게 다음 3가지의 큰 변화를 경험할 수 있습니다. (1) 즉시성소비자는 기다림을 싫어합니다. MCP를 활용하면 AI는 고객 요청에 즉시 대응하며 대화 흐름을 끊지 않습니다. 예를 들어, 라이브 커머스 방송 중 소비자가 “이 제품 해외배송 가능한가요?”라고 물으면 AI는 판매 시스템에서 바로 정보를 가져와 답변합니다.(2) 연속성마케팅은 단발 이벤트로 끝나지 않습니다. MCP를 활용하면 AI가 고객과의 과거 대화를 기억하고, 다음 접점에서 이어서 대화를 진행합니다. 예를 들어, 지난주에 상품 상담을 했던 고객이 다시 채팅을 시작하면 AI가 “지난번 문의하신 블루 재킷, 오늘 재입고 되었습니다.”라고 답할 수 있게됩니다.(3) 몰입감소비자 경험이 끊김 없이 이어지고, 그 안에서 개인화된 정보가 활용되면 고객은 기업과의 상호작용에 더 깊이 몰입할 수 있게됩니다. MCP는 이러한 몰입형 브랜드 경험을 가능하게 하는 핵심 인프라입니다.MCP와 마케팅 혁신마케팅 측면에서 MCP는 다음 3가지 혁신을 기대할 수 있습니다.(1) 실시간 고객 응대의 혁신앞서 들었던 예시와 같이 MCP를 활용하면 고객이 “이 제품 지금 재고 있나요?”라고 묻는 순간, AI는 재고 관리 시스템에서 데이터를 바로 가져와 답변합니다. 더 이상 ‘추측성 응답’이 아닌 검증된 최신 데이터를 기반으로 한 응대가 가능합니다.(2) 개인화의 정교화마케팅의 핵심은 나만을 위한 메시지를 전달하는 것입니다. MCP는 AI가 고객의 과거 구매 이력, 웹사이트 행동 데이터, 실시간 위치 정보까지 통합해 맥락에 맞는 제안을 할 수 있도록 합니다. 예를 들어, 고객이 특정 제품 페이지를 열람한 직후 AI가 “현재 이 제품에 대해 10% 할인 중이며, 오늘 주문 시 내일 배송 가능합니다.”라는 메시지를 전송합니다.(3) 캠페인 운영 자동화마케터는 MCP를 통해 광고 집행 툴, 이메일 마케팅 플랫폼, SNS 채널을 하나의 AI 대화 환경에 통합할 수 있습니다. 캠페인 데이터를 분석해 성과가 낮은 타겟군을 즉시 조정하거나, 성과가 좋은 광고 문안을 다른 채널로 확장하는 자동화도 가능합니다.AI, 도구에서 에이전트로2025년의 마케팅 환경은 과거와 비교할 수 없을 정도로 복잡하고 역동성이 더해지고 있습니다. AI 기술은 단순한 콘텐츠 생성 도구를 넘어, 고객 접점 전체를 통합 관리하는 에이전트 기반 생태계로 발전하고 있습니다.특히 MCP는 AI와 외부 데이터, 도구, 시스템을 하나의 언어로 연결하는 환경을 만드는 핵심 역할을 수행할 것입니다. 결과적으로는 AI 에이전트의 활성화를 이끌어낼 것이라 예상할 수 있습니다.MCP의 확산은 마케팅 생태계에 큰 변화를 가져올 것입니다. 앞으로의 AI 마케팅은 표준화 기반 생태계 → 도구·데이터 실시간 연동 → 자동화된 맞춤 경험 제공이라는 흐름으로 가속화될 것입니다. 마케터는 MCP 덕분에 기술 통합에 쓰던 시간을 절약하고, 전략과 창의성에 집중할 수 있습니다.MCP적용 시 주의점전적으로 AI로 인해 모든것이 자동화될 수록 주의사항은 더욱 명확합니다. 맥사이트픽으로 여러번 언급해드렸던 프라이버시와 보안 문제입니다. MCP로 연결되는 데이터는 실시간성이란 강한 무기를 가집니다. 그리고 그만큼 보안 위협을 수반합니다. AI가 민감한 데이터에 접근하는 만큼, 권한 제어와 감사 로그 관리가 필수이며 때로는 데이터 접근 권한을 최소화하고, 필요한 경우 고객 동의를 명확히 받아야 할 것입니다.또한 사용자 경험 관리 측면으로도 주의가 필요합니다. AI가 모든 요청을 자동 처리하더라도, 고객이 과도한 정보 제공을 요구받는다면 거부감을 느낄 수 있습니다. UX 설계 단계에서 고객 편의성을 최우선으로 고려해야 합니다. AI가 설계한 고객의 UX에 대해 고객이 100%만족할 것이라 기대에 의존하지 않는것이 좋습니다. AI 또한 잘못된 데이터를 기반으로 고객을 잘못 이해하거나 오해하는 경우가 생길 수도 있습니다. MCP의 구조와 설정 방식이 아직은 생소합니다. 이를 해결하기 위해 MCP 경험이 있는 파트너사와 협력하거나, 마케터, 개발자, 경영진이 모여 MCP의 가치와 역할에 대한 공감대 형성과 이해도를 맞추는 것이 첫번째 순서일 수 있습니다.마치며AX(AI 대전환)을 준비하는 기업과 브랜드에게 MCP는 실무에서 마케터가 직면하는 데이터 단절, 시스템 불일치, 운영 비효율 문제를 근본적으로 해결하고 여기에 고객 경험 강화, 영업 프로세스 최적화, 캠페인 자동화 등 다양한 영역에서 효과를 발휘기 위한 최고의 방안이 될 수 있습니다.마케터가 MCP를 성공적으로 활용하려면 우선순위 시스템 선정, 데이터 품질 관리, 보안 설계를 철저히 하기를 권해드립니다. 현시점부터 단계적으로 MCP를 도입하고 경험을 축적하는 기업이 향후 AI 마케팅을 리드하는 브랜드가 될 것임을 강조드리며, 이번 포스팅을 마치겠습니다.