앰플리튜드

웹사이트에 Conversion Analytics를 활용하는 3가지 방법

Team MAXONOMY 2021.01.11

웹사이트에 Conversion Analytics를 활용하는 3가지 방법

전환 분석(Conversion Analytics)은 웹 사이트에서 리드를 늘리기 위한 노력의 첫 시작입니다. 장바구니, 랜딩 페이지 및 블로그 게시물에서 전환 분석을 활용할 수 있는 세 가지 방법을 알아보도록 하겠습니다.






전환 분석이란(Conversion Analytics)?


전환 분석은 웹 사이트 방문자의 행동을 추적하여 그들이 원하는 것을 수행하는지 (전환 또는 중단하는지) 확인하는 방법입니다. 전환 분석을 통해 전환에 해당하는 고객 유형과 행동 유형은 물론, 중단한 사용자가 전환에 실패한 타임과 위치를 파악할 수 있습니다.

전환 분석을 수행하려면 고객의 여정을 먼저 이해해야 합니다. 이를 수행하는 가장 좋은 방법은 웹 사이트 방문자를 고객으로 전환하는 데 필요한 이상적인 단계에 대한 개요를 얻을 수 있도록 고객이 전환 퍼널에서 수행하는 각 단계를 매핑 하는 것입니다.

사용자가 전환 할 것으로 예상되는 제품 또는 웹 사이트의 모든 부분에서 전환 분석을 수행 할 수 있습니다. 전환 분석을 위한 세 가지 공통 영역에는 장바구니, 랜딩 페이지 및 블로그 게시물이 있습니다.







장바구니 전환 분석


장바구니 전환은 전자 상거래 전환 유입 경로의 마지막 단계입니다. 방문자가 구매를 하지 않는 이유를 이해하는 것이 수익 증대의 핵심입니다.


<장바구니에서 전환 분석을 사용하는 세 가지 방법>

다음은 장바구니를 테스트하고 최적화하는 세 가지 일반적인 방법입니다.

1. 배송비 변동을 테스트합니다.

온라인 쇼핑객은 배송비에 점점 더 민감 해지고 있습니다. 이는 장바구니 단계에서 구매 포기 의 주요 원인입니다 . Amplitude의 퍼널 분석을 사용하여 배송 기술 스타트업인 Rappi 는 배송비를 표시한 결제 단계가 중요하지 않다는 사실을 발견했습니다. 고객이 일정 금액 이상 주문하면 무료 배송을 제공함으로써 더 큰 주문 크기를 장려하여 각 거래를 평균 15 % 증가 시켰습니다.

2. 개인화로 고객 경험을 개선하세요.

고객 경험 은 모든 전자 상거래 전환에서 가장 중요한 요소 중 하나입니다. 또한 고객 유지의 주요 동력 이기도합니다 . Blue Apron 은 식사 배달 서비스에 대한 장바구니 포기를 조사하고 Amplitude Engage 및 Optimizely를 사용 하여 구매를 완료하지 않은 사용자에게 개인화된 메시지를 테스트 했습니다. 그 결과 전환이 7 % 증가했습니다.

3. Conversion Driver를 찾으세요.

Amplitude 의 Conversion Drivers 기능은 전환 유입 경로의 단계 사이에서 발생하는 모든 작업을 식별합니다. 그런 다음 각 액션에 상관 관계 점수를 부여하여 전환에 깊이 관련이 있는지 아니면 연관이 낮은지 알려줍니다. 사용자가 장바구니 페이지 직전에 수행하는 작업 중 자신의 경험에 영향을 미치는 작업을 알아보면, 전환과 관련된 행동을 파악하고 촉진하는 데 도움이 될 것입니다.







방문 페이지 전환 분석


랜딩 페이지는 다양한 채널에서 방문자를 안내하는 독립형 웹 페이지입니다. 사용자에게 무료 평가판 등록, 뉴스 레터 구독 또는 eBook 다운로드와 같은 작업을 완료하도록 유도합니다. 랜딩 페이지의 전환 분석은 얼마나 많은 사용자가 액션을 완료했는지 보여주고 다양한 테스트를 통해 전환을 증대시킬 수 있습니다.


<방문 페이지에서 전환 분석을 사용하는 세가지 방법>

다음은 랜딩 페이지를 테스트하는 세 가지 일반적인 방법입니다.

1. 가입 과정에서 저해요소를 제거합니다.

Unbounce는 저해요소를 "방문자가 행동을 완료하려고 할 때 경험하는 심리적 저항"으로 정의합니다. 가입을 가능한 간단하고 쉽게 만들어 저해요소를 줄이는 것이 당신의 임무입니다. 그 중 일부는 페이지 디자인 요소가 압도적이거나 복잡하지 않고 명확하고 이해하기 쉬운 지 확인하는 것일 수도 있죠. 또한 절대적으로 필요한 경우가 아니면 사용자에게 많은 필드를 채우도록 요청하지 마세요. 예를 들면, 이메일 주소만 필요한 경우 이름, 회사, 직위 등과 같은 불필요한 필드는 제거하세요.

2. 다른 메시지를 테스트합니다.

클릭 유도 문안을 구성하는 방식은 사용자가 참여의 가치를 인식하는지 여부에 큰 영향을 미칠 수 있습니다. 사람들이 eBook을 다운로드하도록하려면 여러 가지 방법으로 eBook의 콘텐츠를 구성하고 A / B 테스트 를 사용 하여 어떤 메시지가 가장 공감하는지 확인하세요. 무료 평가판 제공 메시지도 마찬가지입니다.

3. 다른 플랫폼을 비교합니다.

사람들이 웹 사이트를 방문 할 때 사용하는 플랫폼 (예 : 데스크톱과 모바일)별로 분류된 전환 분석을 실행합니다. 플랫폼간에 큰 차이가있는 경우 이유를 조사하십시오. 사용자의 변환을 방해하는 서식 지정과 관련된 버그 또는 플랫폼 별 문제가있을 수 있습니다.

Amplitude 에서 Conversion Driver속성 기능 을 사용하여 이러한 유형의 분석을 실행할 수 있습니다 . Conversion Driver를 통해 팀은 성장을 주도하는 플랫폼, 계획 유형, 캠페인 및 채널을 쉽게 이해할 수 있습니다.







블로그 게시물 전환 분석


회사는 블로그 게시물을 사용하여 최상위 트래픽 생성에서 리드 전환에 이르기까지 다양한 요구 사항을 해결합니다. 블로그 게시물의 전환 분석은 개별 기사를 최적화하는 방법을 식별하고 트래픽을 리드로 전환할 기회를 찾는 데 도움이됩니다.


<블로그 게시물에서 전환 분석을 사용하는 세 가지 방법>

다음은 블로그 게시물을 테스트하고 최적화하는 세 가지 일반적인 방법입니다.

1. Amplitude의 Pathfinder를 사용 하여 전환에 관련있는 블로그 게시물을 찾습니다.

Pathfinder는 사용자가 제품 또는 웹 사이트를 탐색하는 모든 다양한 방법을 볼 수 있도록 도와줍니다. 사용자가 블로그 게시물을 읽은 후 취한 행동을 살펴보면 전환이 몇 단계 제거 된 경우에도 전환과 연결된 행동을 찾을 수 있습니다. 전환과 연결된 것으로 확인 된 블로그 게시물에 CTA를 직접 추가 한 다음 전환 분석을 사용하여 더 많은 사용자가 행동을 취하는 지 확인하세요.

2. 다양한 CTA(Click to Action) 를 테스트 하세요.

때로는 블로그 게시물과 일치한다고 생각하는 클릭 유도 메세지가 실제로 사용자에게 반향을 일으키지 않습니다. 블로그 게시물 내에서 다양한 종류의 작업을 A / B 테스트합니다. 예를 들어, 모든 블로그 게시물 끝에서 독자에게 eBook을 다운로드하도록 유도 할 수 있지만 뉴스 레터 가입은 실제로 더 매력적입니다. 전환 분석을 통해 어떤 CTA가 가장 효과적인지 알 수 있습니다. 또한 제안이 배치 된 위치 (예 : 블로그 게시물의 끝 또는 본문)에 대한 다양한 디자인 선택을 테스트하여 전환에 영향을 미치는지 확인할 수 있습니다.

3. 트래픽이 손실되는 이전 블로그 게시물을 새로 고칩니다.

블로그 게시물이 감소하면 기존 콘텐츠의 수정이 필요할 수 있습니다. 오래된 콘텐츠를 새로 고치려면 예제 또는 통계를 업데이트하여 관련성이 있는지 확인하거나 길이 또는 범위를 확장하거나 SEO에 최적화되어 있는지 확인해야 할 수 있습니다. 새로고침된 블로그 게시물과 인라인 전환 프롬프트를 결합하면 성공을위한 비법을 얻을 수 있습니다.







다음 단계 : 유지

전환 분석 없이는 웹 사이트 전환을 개선하려는 노력이 실제로 효과가 있는지 확인할 수 없습니다. 전환 분석을 사용하여 웹 사이트를 개선하는 방법을 잘 이해하였다면, 다음으로는 고객 유지를 위해 최적화하는 것입니다.





logo

팀맥소노미

YOUR DIGITAL MARKETING HERO

비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요

관련 글 보기

세션 리플레이: 고객의 마음을 읽는 비밀

세션 리플레이: 고객의 마음을 읽는 비밀

지금까지 우리는 전환율, 이탈 지점과 같은 정량적 데이터에 의존하여 의사결정을 내렸습니다. 하지만 데이터가 고객이 '무엇(what)'을 하는지 알려줄 수는 있어도, '왜(why)'를 설명해주지 못하는 경우가 많았죠. 가령, 새롭게 배포한 신규 기능에 대한 사용률이 예상보다 좋지 않았습니다. 클릭률, 전환율 등 데이터를 통해서 이 사실을 객관적으로 파악할 수 있습니다. 그렇지만 왜 사용률이 좋지 않은지는 알 수 없죠.바로 여기서 세션 리플레이(Session Replay)가 등장합니다. 세션 리플레이는 말 그대로 사용자의 세션을 직접 '시청'함으로써 숫자와 실제 사용자 경험 사이의 간극을 메워주는 해결책입니다.이번 포스팅에서는 세션 리플레이란 무엇이며, 어떻게 작동하고, 어떻게 활용할 수 있는지 알아보도록 하겠습니다.1. 세션 리플레이란?■ 세션 리플레이: 정량적 데이터의 한계 극복세션 리플레이(Session Replay)는 사용자가 웹사이트 또는 모바일 애플리케이션을 경험하는 방식을 재구성하여 시각화하는 기능입니다. 사용자의 클릭, 마우스 움직임, 페이지 스크롤 등을 수집하여, 사용자가 앱이나 웹에서 수행한 작업을 워킹스루(walkthrough) 스타일의 비디오 형태로 보여줍니다.아래 영상은 한 익명의 유저가 MAXONOMY홈페이지를 탐색하는 모습을 세션 리플레이로 재생한 결과입니다. 정말 화면을 녹화한 것처럼 생생하게 유저의 탐색 여정을 엿볼 수 있습니다.■ 흔한 오해1: 녹화 vs 재구성세션 리플레이에 대해 흔히하는 오해 중 하나가 ‘사용자 화면을 실제로 녹화한 것 아닌가’는 생각입니다. 결론부터 말하자면 아닙니다! 세션 리플레이는 녹화가 아닌 재구성의 방식으로 작동합니다. 모든 사용자의 모든 순간을 실제 동영상으로 녹화한다면 엄청난 용량의 스토리지가 필요할 뿐더러, 엄청난 용량의 실시간 데이터 전송이 필요하여, 현실적으로 불가능한 방식입니다.세션 리플레이는 클릭, 마우스 움직임, 스크롤 등 사용자의 상호작용을 이벤트(Event)로 간주하고, 이 이벤트 정보를 수집합니다. 그리고 이 수집된 이벤트를 기반으로 사용자의 경험을 다시 만들어내는 재구성(Reconstruction) 과정을 거쳐 Amplitude 플랫폼 안에서는 마치 진짜 동영상을 보는 것처럼 나타나죠.예를들어, 어떤 사용자가 한 쇼핑몰에서서 어떤 상품에 대해 구매버튼을 클릭했다면, [유저A가, 2025.10.28 10시 20분 2초에, url A에서, 버튼A를 클릭]이라는 간소화된 정보가 이벤트로 수집되는 것이죠. 그리고 우리가 해당 세션 리플레이를 재생하면, 이 정보를 기반으로 리플레이를 재구성하여, 마치 녹화된 것과 같은 영상을 볼 수 있게 되는 것입니다.■ 흔한 오해2: 단순 리플레이 기능이다?세션 리플레이에 대한 또 다른 오해는 사용자의 어려움을 찾으려면 ‘수백 개의 리플레이를 일일이 확인해야 한다’는 것 입니다. 현재 최신 세션 리플레이는 중요한 순간을 자동으로 감지하고 표시해주는 기능을 갖추고 있습니다.바로 '좌절 분석(frustration analytics)'과 '오류 분석(error analytics)'입니다. 이 도구는 특정 좌절 신호가 포함된 세션을 자동으로 찾아내 태그를 지정합니다.Rage Clicks(분노 클릭): 사용자가 답답함을 느껴 동일한 요소를 여러 번 반복해서 클릭하는 행동.Dead Clicks(데드 클릭): 사용자가 상호작용이 불가능한 요소를 클릭하는 행동.JavaScript 오류: 개발자 콘솔에 나타나는 기술적 오류를 세션 타임라인에서 직접 확인 가능.여기서 더 나아가, 최근에는 세션 리플레이 내용을 AI 기반으로 요약해서 살펴볼 수 있습니다. Amplitude는 마찰을 식별하고 사용자 감정을 분석하며 실행 가능한 권장 사항을 제공하므로 인사이트를 얻은 후 더 빠르게 적절한 조치를 취할 수 있습니다.이를 통해 엄청난 시간을 절약하여 제품 문제를 파악하고 개선안을 도출할 수 있습니다.2. 세션 리플레이 활용하기■ 전환율 개선 및 사용자 경험(UX) 최적화정량적 분석(퍼널 분석 등)에서 이탈이 발생한 지점을 발견한 후, 해당 세션 리플레이를 시청하여 전환을 가로막는 마찰 지점(friction points)을 시각적으로 파악할 수 있습니다. 이 인사이트를 바탕으로 가설을 세우고 A/B 테스트를 실행하여 전환율을 높일 수 있습니다.실제로 여행 계획 플랫폼 Evaneos는 이 방식을 활용하여 CTA 클릭률을 2배, 전환율을 20% 증가시켰습니다.■ 정량적으로 수집되지 않는 문제 파악모든 사용자 문제가 정량적으로 수집되는 것은 아닙니다. 앞에서 설명한 '좌절 분석(frustration analytics)'과 '오류 분석(error analytics)' 기능을 활용하면, 이런 문제를 손쉽게 파악할 수 있습니다.■ 고객 지원(CS) 효율성 증대고객 지원 팀은 세션 리플레이를 연결하여 사용자가 겪고 있는 문제에 대한 맥락을 즉시 파악할 수 있습니다. 이는 문제 해결 시간을 단축하고 고객에게 더 정확한 지원을 제공하는 데 도움을 줍니다.3. 활용 극대화하기세션 리플레이는 디지털 분석 플랫폼과 통합될 때 가장 강력한 힘을 발휘합니다.■ 세션 리플레이 에브리웨어(Session Replay Everywhere)세션 리플레이는 분석, A/B 테스트, 설문 조사 등 Amplitude 속 모든 워크플로우에 통합되어 있습니다. Amplitude를 사용하는 도중 자연스럽게, 필요한 리플레이를 볼 수 있습니다.• 퍼널 분석: 퍼널 차트에서 이탈하는 사용자가 왜 이탈했는지, 도구 전환 없이 즉시 리플레이를 확인할 수 있습니다.• 실험(A/B Test): 실험 결과를 리플레이와 직접 연결하여, 어떤 버전이 고객에게 더 나은 경험을 제공했는지 시각적으로 검증할 수 있습니다.■ 원활한 인사이트 공유발견된 인사이트를 쉽게 공유하고 공감대를 형성할 수 있습니다.• 정확한 순간 공유: 타임스탬프가 지정된 리플레이 링크를 공유하면, 공유하고 싶은 시간대로 바로 보여줄 수 있습니다.• 대시보드 및 GIF 공유: 리플레이 링크를 대시보드에 직접 추가하거나, 핵심 사용자 상호 작용을 GIF로 캡처하여 플랫폼 액세스 권한이 없는 이해관계자에게도 쉽게 공유할 수 있습니다.• 공유 가능한 필터: 오류가 있거나 좌절도가 높은 특정 세션 목록을 저장하고 팀 전체가 공유하여, 모두가 중요한 데이터에 쉽게 접근할 수 있습니다.■ 세션 리플레이 파티(Session Replay Party) 문화 형성하기세션 리플레이를 PM이나 데이터 분석가가 혼자 분석하는 도구로 생각할 수 있습니다. 하지만 세션 리플레이는 프로덕트, 마케팅, 고객 지원, 엔지니어링 등 디지털 경험 개선과 관련한 모든 팀이 사용할 수 있습니다. 이들이 한 자리에 모여 세션 리플레이 활용도를 높이는 방법이 있습니다. 바로 '세션 리플레이 파티'입니다.세션 리플레이 파티는 엔지니어, 디자이너, 마케터, PM 등 여러 부서의 팀원들이 매주 함께 모여 선정된 사용자 세션을 시청하는 활동입니다. 이 간단한 활동은 단순한 아이디에이션을 넘어, 강력한 효과를 발휘합니다. 다음은 세션 리플레이 파티의 프레임워크입니다.테마 선정: 현재 팀의 목표와 관련된 주제를 정합니다 (예: 온보딩 개선).리플레이 준비: 주제와 관련된 2-3개의 의미 있는 리플레이를 미리 찾아둡니다.공동 작업 공간 마련: FigJam, Miro와 같은 공유 문서에 '관찰', '아이디어', '버그' 세 가지 카테고리를 만듭니다.실행 가능한 결과물 도출: 회의가 끝날 때 최소 2개 이상의 실행 가능한 Jira 티켓을 생성하는 것을 목표로 합니다.Amplitude를 활용하는 한 기업의 개발자는 세션 리플레이 파티가 자신이 가장 좋아하는 회의라고 말합니다. 개발자가 이런 말을 하는 것은 매우 드문 일이죠!이 활동은 팀 전체에 걸쳐 깊은 고객 공감대를 형성하고, 주요 마찰 지점에 대한 부서 간의 이해를 일치시키며, 더 나은 아이디어와 빠른 개발 주기를 촉진합니다. 이처럼 세션 리플레이는 단순한 데이터 분석 도구의 역할을 넘어, 진정으로 고객 중심적인 조직 문화를 구축하는 촉매제가 될 수 있습니다.4. 세션 리플레이의 흔한 우려사항■ 웹사이트 속도 저하세션 리플레이 도입을 주저하는 가장 큰 이유는 웹사이트 성능 저하에 대한 우려입니다. 사용자 경험을 개선하기 위해 도입한 도구가 오히려 경험을 해칠 수 있다는 생각이죠.하지만 포괄적인 테스트 결과에 따르면, 세션 리플레이가 웹 성능에 미치는 영향은 미미한 수준으로 거의 무시할 수 있습니다. Gmail의 창시자 폴 부킷(Paul Buchheit)에 의하면, 고객이 "즉각적”이라고 느끼려면 100ms 안에 로딩이 완료되어야 합니다. 세션 리플레이의 임계값 구체적인 수치는 다음과 같습니다.초기 DOM 스냅샷 캡처: 약 64ms 소요이후 변경 사항 캡처: 약 11ms 소요두 수치 모두 사용자가 지연을 인지하기 시작하는 100ms보다 훨씬 낮습니다. 또한 fflate와 같은 경량 압축 라이브러리를 활용한 효율적인 일괄 처리와 압축 기술 덕분에 네트워크 요청 크기는 약 135바이트에 불과합니다. 이정도의 미미한 성능 저하라면,&nbsp;■ 개인정보 보호데이터 프라이버시, 보안 및 PII(개인 식별 정보) 보호 역시 가장 많이 우려하는 요소입니다. “사용자가 사용하는 화면을 보는데, 개인정보 문제는 없을까?”라는 생각이 자연스럽게 들 수 밖에 없죠. 가령, 고객이 ID, 패스워드를 입력하는 화면까지 녹화되면 큰 문제가 될 것입니다. 이러한 우려를 해소하기 위해 세션 리플레이는 '개인정보 우선(privacy-first)' 접근 방식으로 설계되었습니다. Amplitude는 선택 가능한 세 가지 개인정보 보호 수준을 제공합니다.보수적 수준 (Conservative level): 모든 텍스트와 모든 양식 필드를 마스킹합니다. 금융, 의료 등 민감한 데이터를 다루는 회사에 적합합니다.중간 수준 (Medium level, 기본 설정): 모든 양식 필드와 텍스트 입력만 마스킹하고 다른 텍스트는 캡처합니다.경량 수준 (Light level): 비밀번호, 신용카드 번호, 이메일 주소 등 민감한 입력의 하위 집합만 마스킹합니다. 비즈니스 생산성 앱이나 이커머스 회사 등에 적합합니다.이러한 기본 설정 외에도, 특정 요소를 선택적으로 마스킹하거나 특정 사용자에 대한 리플레이 캡처를 선택적으로 제외하거나 데이터 삭제 요청 API를 통해 훨씬 더 세밀한 제어가 가능합니다. Amplitude는 강력하고 유연한 개인정보 보호 프레임워크를 제공하여, 기업이 특정 법률 및 보안 요구사항을 준수하면서 안심하고 인사이트를 얻을 수 있도록 지원합니다.5. 마치며: 이제 여러분의 제품 속 숨겨진 이야기를 발견할 차례입니다세션 리플레이는 단순한 재생 도구를 훨씬 뛰어넘는 기술입니다. 세션 리플레이는 사용자 행동 이면의 '이유'를 밝혀내는 정교한 지능형 플랫폼입니다.단순히 UX를 개선하는 것을 넘어, 더 공감대 높은 팀 문화를 구축하고 조직 전체의 방향을 일치시키는 전략적 자산이 될 수 있습니다. 이제 여러분의 제품 속에 숨겨진 이야기를 발견할 차례입니다. 정량적 데이터와 정성적 데이터를 하나의 플랫폼에서 통합함으로써 고객에 대한 완전한 이해를 바탕으로 더 나은 디지털 경험을 제공해보세요.콘텐츠 더 읽어보기프리미엄 가이드: 고객 행동 데이터 트래킹 가이드블로그: Amplitude Feature Experiment: 데이터 기반 실험의 시작블로그: Amplitude Autocapture: 페이지 진입, 클릭, 앱 종료까지 고객 행동을 자동 수집하는 법

[더맥소노미2024 세션 스케치IX] 센트비의 데이터 활용법: Amplitude를 활용하여 핵심 지표 발굴하기

[더맥소노미2024 세션 스케치IX] 센트비의 데이터 활용법: Amplitude를 활용하여 핵심 지표 발굴하기

더맥소노미2024 세션 스케치 9번째 포스트입니다.&nbsp;이번 세션 스케치는 패널세션으로 진행되었던,&nbsp;센트비가 Amplitude를 활용하여 어떻게 핵심 지표를 발굴했는지에 대한 인사이트를 정리해보고자 합니다. 팀맥소노미의 이종은 고객성공매니저님의 진행 하에&nbsp;센트비의 김성민 매니저님이 패널로 참여하여 상세한 사례와 노하우를 공유해주셨습니다.&nbsp;&nbsp;The MAXONOMY 2024&nbsp;는 지난 11월 28일, 롯데호텔월드 크리스탈볼룸에서 개최된, 데이터 마케팅 솔루션 전문가&nbsp;팀 맥소노미가 주최하는 연례 마테크 컨퍼런스로, 국내외 마테크, 애드테크 솔루션사 및 국내 최정상 기업의 마케팅, 데이터 담당자 분들과 함께&nbsp;데이터를 활용한 마케팅 성공 사례와 인사이트, 트렌드 등을 공유하는 자리입니다.금번 컨퍼런스에는 1천여 명의 마케터, 비즈니스 리더, 프로덕트 매니저 분들께서 참석해 주셨으며, 총 21명의 연사분들께서 'Further Steps of Data Marketing'을 주제로 생생한 데이터 활용 전략과 사례, 노하우를 공유해 주셨습니다.&nbsp;센트비의&nbsp;데이터&nbsp;활용법:&nbsp;Amplitude를&nbsp;활용하여&nbsp;핵심&nbsp;지표&nbsp;발굴하기센트비&nbsp;| 김성민 매니저팀 맥소노미&nbsp;| 이종은 CSM&nbsp;김성민 매니저님은 센트비에서 그로스 프로덕트 매니저로서&nbsp;Amplitude를 활용하여 다양한 데이터에서 인사이트를 발견하는 업무를 하고 있으십니다. 센트비는 국경없는 외환 거래를 만들기 위한 글로벌 외환 거래 솔루션 전문 기업입니다. 기존 외화 송금 및 결제 서비스는 수수료가 높고 느리다는 치명적인 단점이 있는데요. 센트비는 이런 단점을 보완하는 서비스를 제공하고 있습니다. 현재 총 50여개 국가에 송금 서비스를 지원하고 있으며 개인은 센트비, 기업은 센트비즈라는 이름으로 서비스를 사용할 수 있습니다. 이렇게 글로벌한 서비스를 제공하는 기업인 만큼 다양한 데이터 인사이트가 기대가 되는데요! 지금부터 센트비가 데이터를 어떤식으로 활용하고 있는지 질의응답을 내용을 기반으로 알아보도록 하겠습니다.Q1. 2년 전 쯤 Amplitude를 처음 도입하셨는데, Amplitude를 어떻게 활용하는 중인가요?센트비가 처음 Amplitude를 도입했을 때는 기능과 서비스를 이해하는데만 많은 시간이 들었다고 합니다. 그리고 현재는 Amplitude에 대한 이해도가 많이 증가하였고, 주로 센트비의 문제점 발견을 위해 Amplitude를 활용하고 있다고 합니다. 센트비는 금융서비스인만큼 고객에게 복잡하게 보일 수 있고, 보안을 위한 여러가지 정보를 요구하거나 관련된 규정을 준수하기 위한 과정이 불가피합니다. 이러한 특성 탓에 서비스를 사용하다가 중간에 이탈하는 경우라던지, 설치 후 제대로 사용하지 않는 경우가 많습니다. 이런 부분을 Amplitude의 분석 기능을 통해 모니터링하고 개선점을 발견하고 있습니다. 특히 Amplitude같은 경우 서버 데이터뿐만 아니라,&nbsp;설치된 SDK를 통해 클라이언트 데이터까지 수집하고 시각화할 수 있어 다른 솔루션에 비해 유용하다고 말합니다.Q2. 센트비에서 특히나 유용하게 데이터를 활용한 사례를 공유해주실 수 있나요?센트비 전사적인 핵심 지표를 Amplitude를 통해서 설정하였다고 합니다. 그 과정을 처음부터 설명해주셨는데요. Amplitude 도입 이후 가장 첫 번째로 시작한 프로젝트는 제품의 고객 리텐션 주기를 찾고 그 베이스 라인을 측정하는 일이었다고 합니다. 현재 우리 고객이 우리 서비스를 어떤 주기로 사용하고, 리텐션 주기는 어떤지 확인할 필요가 있었고 Amplitude의 리텐션 차트를 통해서 이를 확인했습니다.&nbsp;사실 Amplitude를 도입하기 이전에는 SQL쿼리를 통해 리텐션 분석을 진행하곤 했다는데요. 쿼리를 통해 리텐션을 분석하는 일은 굉장히 비효율적이고 공수가 많이 듭니다. 하지만 Amplitude를 활용한 이후에는 클릭 한 번으로 간단하게 리텐션 분석을 할 수 있었고 코호트 또한 클릭 한번으로 설정하고 변경하여 조회 할 수 있었습니다.&nbsp;특히 무엇보다 사내에서 설정한 리텐션 프레임워크, 유저 액션 기준 등을 적용하고 활용할 수 있다는 점이 매력적이었다고 합니다. 이를 통해 센트비만의 리텐션 주기와 베이스 라인을 설정할 수 있었다고 합니다.Q3. 리텐션 주기와 베이스 라인을 측정한 이후에는 어떤 활동을 했나요?&nbsp;올바른 고객 리텐션이 정의되었다면, 리텐션이 높은 유저와 낮은 유저 간의 비교 분석이 가능해졌다는 이야기입니다. 즉, 리텐션이 높은 유저와 낮은 유저 각자의 코호트를 생성하고 높은 코호트가 낮은 코호트에 비해 어떤 데이터적인 특정을 가지고 있는지 분석할 수 있었죠. 예를 들어 높은 리테션을 가진 집단은 장바구니를 클릭하는 액션이 반드시 일어난다는 특징을 발견한다면, 장바구니를 클릭을 유도하여 장바구니 클릭율이 높아질 수록 리텐션 수치도 개선되지 않을까라는 기대를 해볼 수도 있을 것입니다.&nbsp;이런 과정을 가설 수립이라고 하는데요. 가설 수립 과정을 다시 요약하자면 리텐션이 높은 유저를 파악하고, 리텐션 높은 유저의 행동 특성을 파악한 뒤, 그 특정 행동을 유도했을 때 리텐션에 크게 기여했는지 실험하고 데이터로 검증하는 것입니다. 이후엔 동일하게&nbsp;가설 수립과 검증을 무한하게 반복한다고 하는데요. 전사적 핵심 지표 발굴 과정도 이와 같은 방식을 통해서 이루어졌다고 합니다.Q4. 기존 유저의 리텐션도 중요하지만 비즈니스 성장을 위해선 신규 유저도 중요한데 이를 어떻게 관리했나요?기존 유저를 리텐션 차트 위주로 관리하였다면, 신규 유저는 퍼널차트를 중심으로 관리하였다고 합니다. 관리하는 방식은 리텐션 차트와 동일한데요. 전환 주기를 정의하는 것이 첫 번째 단계였습니다. 전체의 80% 유저를 '대부분'의 유저로 정의하고 이들이 퍼널을 완료하는 지점을 올바른 전환주기로 설정하였습니다.&nbsp;&nbsp;주기 내에 고객이 처음 유입되는 수간부터 첫 송금까지 유의미한 퍼널을 정의하고 어떤 퍼널에서 많이 이탈하고 불편함을 겪는지를 발견했습니다. 이를 통해 문제가 되는 2-3개의 퍼널을 발견하였고, 해당 퍼널을 전환하는 유저와 그렇지 못하는 유저의 차이를 분석하였습니다. 여기서 얻은 인사이트를 기반으로 서비스를 개선하고 신규 유저가 중간에 이탈하는 문제를 해결할 수 있었습니다.Q5. 말씀 주신 것 외에 Amplitude로 인사이트를 얻었던 경험이 있으면 공유해주세요!&nbsp;Amplitude를 통해 다양한 인사이트를 얻을 수 있었고 여러 기능을 유용하게 활용하였다고 하는데요. 김성민 매니저님 개인적으로는 User Lookup 기능을 자주 활용한다고 합니다. User Lookup은 고객이 처음 서비스에 방문한 순간부터 첫 송금을 하고 그 이후로 제품에 Lock-in 하기 서비스 내에서 어떠한 여정을 거치는지 유저나 이벤트 로그 단위로 확인할 수 있는 기능입니다. 틈틈히 랜덤 유저 한 명 한 명의 여정을 살펴보고 이탈한 유저는 어떤 화면에서 이탈하였는지, 어떤 행동을 하는지 등을 알 수 있습니다. 김성민 매니저님은 마치 고객을 바로 옆에서 지켜보고 도와주는 기분으로 해당 기능을 활용했다고 하네요!!&nbsp;그 외에도 MAU 모니터링, Stickness 비교 같은 차트도 자주 활용한다고 합니다. 송금이 센트비의 핵심 기능이긴 하지만, 유저가 더 자주 접속하게 하기 위해선 송금 외의 부가적인 기능도 많이 사용할 필요가 있는데 그 현황을 파악하기 위해선 퍼널이나 리텐션 차트 외의 이런 차트를 확인하는 것이 필요하죠.&nbsp;김성민 매니저님은 마지막으로 데이터 분석에서 중요한 것은 고객과 도메인에 대한 이해라고 합니다. 이런 이해가 바탕이 되어야 검증 가능성이 높은 가설을 세우고 지속적인 개선(그로스)가 가능하다는 말씀을 하시며 세션을 마무리하였습니다. 데이터 분석에는 정답이 없고 각자의 제품, 각자의 고객을 깊이 이해하는 것이 필요하다는 말씀이 크게 와 닿았습니다.📺 센트비의 데이터 마케팅 이야기&nbsp;전체 영상 보러가기&nbsp;팀 맥소노미와 글로벌 마테크 &amp; 애드테크 솔루션사, 그리고 국내 최정상 기업이 함께했던 The MAXONOMY 2024의 모든 세션은&nbsp;더맥소노미2024 다시보기에서 확인하실 수 있습니다. 더맥소노미2024를 통해 그동안의 고민이 조금은 가벼워지셨기를 바라며, 더맥소노미는 더욱 유익한 인사이트와 정보로 2024년 10월에 다시 찾아뵙겠습니다.

고객 Lifecycle 분석의 핵심 열쇠 "행동 코호트"

고객 Lifecycle 분석의 핵심 열쇠 "행동 코호트"

Amplitude의 행동 코호트는 충성 고객을 식별하고 유치하여 고객 라이프 사이클의 세 가지 중요한 단계 (획득, 참여, 유지)를 보다 효율적으로 만들도록 설계되었습니다.고객은 우리 사이트를 방문할 때마다 매번 동일한 목적을 가지지 않습니다. 때로는 구매를 위해서, 때로는 단순히 가격 탐색을 위해서, 혹은 콘텐츠 소비를 위해서 방문합니다. 따라서 우리는 개개인의 목적을 그룹핑하여 그들의 변화를 파악하고 사전에 대비해야 합니다.&nbsp;Amplitude(앰플리튜드)&nbsp;내에서는 행동 집단을 만들어 이러한 행동 변화를 설명하고 계획할 수 있습니다.&nbsp;이렇게 하면 이전에 설명하지 않았던 다른 숨겨진 사용자 페르소나를 파악할 수 있습니다.&nbsp;고객 기반의 다양한 세그먼트를 정의하고 분석하여 라이프 사이클의 여러 부분에서 고객에게 동기를 부여하는 요소를 배우고 이해할 수 있습니다.&nbsp;&nbsp;고객 라이프 사이클이란 무엇일까요?고객 라이프 사이클은 제품, 웹 사이트, 애플리케이션 또는 지원 시스템에 참여하기 전, 도중 및 후에 사용자가 따르는 경로입니다.&nbsp;이 수명주기는 사용자가 가입하기 훨씬 전에 시작되며 고객이 행여나 흥미를 잃은 후에도 계속됩니다.고객 라이프 사이클의 주요 이정표에는 획득, 참여 및 유지가 포함됩니다.&nbsp;이 세 단계에는&nbsp;인식, 전환, 구매, 활성화, 갱신 및 추천이라는 점진적인 단계가 있습니다.인식은&nbsp;고객 라이프 사이클의 첫 번째 단계입니다.&nbsp;여기에서 잠재 고객이 제품을 발견하고 알게 됩니다.전환은 잠재 고객이 귀사의 솔루션을 경쟁 업체와 차별화하는 포인트로 탐색을 진행하는 지점입니다.&nbsp;궁극적인 목표는 고객이 자신의 요구 사항을 가장 잘 충족시킬 수 있다고 느끼도록 해야 합니다.구매&nbsp;단계는 제품의 선택 및 구매를 포함합니다.&nbsp;제품 마케팅 전략과 코호트의 참여가 주요합니다.활성화&nbsp;단계는 사용자가 첫 긍정적 인상을 유지하도록 하는 게&nbsp;매우 중요합니다.리텐션은 고객이 만족도를 명확하게 나타내는 단계입니다. 그들은 그들이 당신의 플랫폼을 가치 있게 생각한다는 것을 보여줌으로써 (사용한 돈, 소요 시간, 기간 및 참여 깊이를 통해) 유지는 또한 고객 평생 가치를 높일 수 있는 가장 큰 부분입니다.&nbsp;갱신 :&nbsp;사용자가 비즈니스 약관을 갱신하거나 추가 제품을 구매하거나 구독을 모두 업그레이드하는 부분입니다.추천 :&nbsp;사용자가 친구 및 동료에게 제품을 홍보하거나 추천 프로그램에 적극적으로 참여할 때 발생합니다.사용자는 이러한 단계 중 어느 단계에서든 자연스럽게 고객 라이프 사이클에서 벗어날 수 있습니다.&nbsp;Amplitude(앰플리튜드)와 같은&nbsp;제품 분석을 통해&nbsp;행동 코호트를 활용함으로써&nbsp;제품 팀은 고객의 행동 주기를 파악하여 기존 메시징, 채널 및 경험을 식별하고 활용할 수 있습니다.그렇다면 이러한 코호트를 추출하는데 주요한 진단 질문 예제를 살펴볼게요.코호트 추출&nbsp;시, 주요 진단 질문이렇게 준비된 질문 중에서,&nbsp;&nbsp;"얼마나 많은 고객이 Appboy(=Braze) email을 통해 인해 신규 가입을 했는가?"라는&nbsp;질문에 대해 가정해보고, 코호트를 추출한다면 다음과 같은 구성으로 쉽고 간단하게 Amplitude(앰플리튜드)를 통해서 코호트를 추출할 수 있습니다.고객 라이프 사이클을 정기적으로 재점검하세요.고객 라이프 사이클은 사용자의 우선순위와 선호도가 시간이 지남에 따라 진화함으로 제품 전략 또한 지속적으로 진화해야 합니다. 사용자가 주요 workflow를 계속 진행할 수 있도록 하려면 고객 라이프 사이클의 각 단계에서 대상 행동 집단을 일관되게 검토하는 것이 중요합니다.&nbsp;행동 코호트를 정기적으로 검토하면 성공적이고 맞춤화 된 고객 라이프 사이클을 위해 고관여 고가치 고객을 계속 확보, 참여 및 유지할 수 있습니다.

PM이라면 꼭 알아야 할 데이터 해석 오류 7가지

PM이라면 꼭 알아야 할 데이터 해석 오류 7가지

데이터 기반 의사결정에서 흔히 발생하는 7가지 인지 편향과 PM을 위한 실전 대처법

전환 분석(Conversion Analytics)은 웹 사이트에서 리드를 늘리기 위한 노력의 첫 시작입니다. 장바구니, 랜딩 페이지 및 블로그 게시물에서 전환 분석을 활용할 수 있는 세 가지 방법을 알아보도록 하겠습니다.






전환 분석이란(Conversion Analytics)?


전환 분석은 웹 사이트 방문자의 행동을 추적하여 그들이 원하는 것을 수행하는지 (전환 또는 중단하는지) 확인하는 방법입니다. 전환 분석을 통해 전환에 해당하는 고객 유형과 행동 유형은 물론, 중단한 사용자가 전환에 실패한 타임과 위치를 파악할 수 있습니다.

전환 분석을 수행하려면 고객의 여정을 먼저 이해해야 합니다. 이를 수행하는 가장 좋은 방법은 웹 사이트 방문자를 고객으로 전환하는 데 필요한 이상적인 단계에 대한 개요를 얻을 수 있도록 고객이 전환 퍼널에서 수행하는 각 단계를 매핑 하는 것입니다.

사용자가 전환 할 것으로 예상되는 제품 또는 웹 사이트의 모든 부분에서 전환 분석을 수행 할 수 있습니다. 전환 분석을 위한 세 가지 공통 영역에는 장바구니, 랜딩 페이지 및 블로그 게시물이 있습니다.







장바구니 전환 분석


장바구니 전환은 전자 상거래 전환 유입 경로의 마지막 단계입니다. 방문자가 구매를 하지 않는 이유를 이해하는 것이 수익 증대의 핵심입니다.


<장바구니에서 전환 분석을 사용하는 세 가지 방법>

다음은 장바구니를 테스트하고 최적화하는 세 가지 일반적인 방법입니다.

 

1. 배송비 변동을 테스트합니다.

온라인 쇼핑객은 배송비에 점점 더 민감 해지고 있습니다. 이는 장바구니 단계에서 구매 포기 의 주요 원인입니다 . Amplitude의 퍼널 분석을 사용하여 배송 기술 스타트업인 Rappi 는 배송비를 표시한 결제 단계가 중요하지 않다는 사실을 발견했습니다. 고객이 일정 금액 이상 주문하면 무료 배송을 제공함으로써 더 큰 주문 크기를 장려하여 각 거래를 평균 15 % 증가 시켰습니다.

 

2. 개인화로 고객 경험을 개선하세요.

고객 경험 은 모든 전자 상거래 전환에서 가장 중요한 요소 중 하나입니다. 또한 고객 유지의 주요 동력 이기도합니다 . Blue Apron 은 식사 배달 서비스에 대한 장바구니 포기를 조사하고 Amplitude Engage 및 Optimizely를 사용 하여 구매를 완료하지 않은 사용자에게 개인화된 메시지를 테스트 했습니다. 그 결과 전환이 7 % 증가했습니다.

 

3. Conversion Driver를 찾으세요.

Amplitude 의 Conversion Drivers 기능은 전환 유입 경로의 단계 사이에서 발생하는 모든 작업을 식별합니다. 그런 다음 각 액션에 상관 관계 점수를 부여하여 전환에 깊이 관련이 있는지 아니면 연관이 낮은지 알려줍니다. 사용자가 장바구니 페이지 직전에 수행하는 작업 중 자신의 경험에 영향을 미치는 작업을 알아보면, 전환과 관련된 행동을 파악하고 촉진하는 데 도움이 될 것입니다.







방문 페이지 전환 분석


랜딩 페이지는 다양한 채널에서 방문자를 안내하는 독립형 웹 페이지입니다. 사용자에게 무료 평가판 등록, 뉴스 레터 구독 또는 eBook 다운로드와 같은 작업을 완료하도록 유도합니다. 랜딩 페이지의 전환 분석은 얼마나 많은 사용자가 액션을 완료했는지 보여주고 다양한 테스트를 통해 전환을 증대시킬 수 있습니다.


<방문 페이지에서 전환 분석을 사용하는 세가지 방법>

다음은 랜딩 페이지를 테스트하는 세 가지 일반적인 방법입니다.

 

1. 가입 과정에서 저해요소를 제거합니다.

Unbounce는 저해요소를 "방문자가 행동을 완료하려고 할 때 경험하는 심리적 저항"으로 정의합니다. 가입을 가능한 간단하고 쉽게 만들어 저해요소를 줄이는 것이 당신의 임무입니다. 그 중 일부는 페이지 디자인 요소가 압도적이거나 복잡하지 않고 명확하고 이해하기 쉬운 지 확인하는 것일 수도 있죠. 또한 절대적으로 필요한 경우가 아니면 사용자에게 많은 필드를 채우도록 요청하지 마세요. 예를 들면, 이메일 주소만 필요한 경우 이름, 회사, 직위 등과 같은 불필요한 필드는 제거하세요. 

 

2. 다른 메시지를 테스트합니다.

클릭 유도 문안을 구성하는 방식은 사용자가 참여의 가치를 인식하는지 여부에 큰 영향을 미칠 수 있습니다. 사람들이 eBook을 다운로드하도록하려면 여러 가지 방법으로 eBook의 콘텐츠를 구성하고 A / B 테스트 를 사용 하여 어떤 메시지가 가장 공감하는지 확인하세요. 무료 평가판 제공 메시지도 마찬가지입니다.

 

3. 다른 플랫폼을 비교합니다.

사람들이 웹 사이트를 방문 할 때 사용하는 플랫폼 (예 : 데스크톱과 모바일)별로 분류된 전환 분석을 실행합니다. 플랫폼간에 큰 차이가있는 경우 이유를 조사하십시오. 사용자의 변환을 방해하는 서식 지정과 관련된 버그 또는 플랫폼 별 문제가있을 수 있습니다.

Amplitude 에서 Conversion Driver 의 속성 기능 을 사용하여 이러한 유형의 분석을 실행할 수 있습니다 . Conversion Driver를 통해 팀은 성장을 주도하는 플랫폼, 계획 유형, 캠페인 및 채널을 쉽게 이해할 수 있습니다.







블로그 게시물 전환 분석


회사는 블로그 게시물을 사용하여 최상위 트래픽 생성에서 리드 전환에 이르기까지 다양한 요구 사항을 해결합니다. 블로그 게시물의 전환 분석은 개별 기사를 최적화하는 방법을 식별하고 트래픽을 리드로 전환할 기회를 찾는 데 도움이됩니다.


<블로그 게시물에서 전환 분석을 사용하는 세 가지 방법>

다음은 블로그 게시물을 테스트하고 최적화하는 세 가지 일반적인 방법입니다.

 

1. Amplitude의 Pathfinder를 사용 하여 전환에 관련있는 블로그 게시물을 찾습니다.

Pathfinder는 사용자가 제품 또는 웹 사이트를 탐색하는 모든 다양한 방법을 볼 수 있도록 도와줍니다. 사용자가 블로그 게시물을 읽은 후 취한 행동을 살펴보면 전환이 몇 단계 제거 된 경우에도 전환과 연결된 행동을 찾을 수 있습니다. 전환과 연결된 것으로 확인 된 블로그 게시물에 CTA를 직접 추가 한 다음 전환 분석을 사용하여 더 많은 사용자가 행동을 취하는 지 확인하세요.

 

2. 다양한 CTA(Click to Action) 를 테스트 하세요.

때로는 블로그 게시물과 일치한다고 생각하는 클릭 유도 메세지가 실제로 사용자에게 반향을 일으키지 않습니다. 블로그 게시물 내에서 다양한 종류의 작업을 A / B 테스트합니다. 예를 들어, 모든 블로그 게시물 끝에서 독자에게 eBook을 다운로드하도록 유도 할 수 있지만 뉴스 레터 가입은 실제로 더 매력적입니다. 전환 분석을 통해 어떤 CTA가 가장 효과적인지 알 수 있습니다. 또한 제안이 배치 된 위치 (예 : 블로그 게시물의 끝 또는 본문)에 대한 다양한 디자인 선택을 테스트하여 전환에 영향을 미치는지 확인할 수 있습니다.

 

3. 트래픽이 손실되는 이전 블로그 게시물을 새로 고칩니다.

블로그 게시물이 감소하면 기존 콘텐츠의 수정이 필요할 수 있습니다. 오래된 콘텐츠를 새로 고치려면 예제 또는 통계를 업데이트하여 관련성이 있는지 확인하거나 길이 또는 범위를 확장하거나 SEO에 최적화되어 있는지 확인해야 할 수 있습니다. 새로고침된 블로그 게시물과 인라인 전환 프롬프트를 결합하면 성공을위한 비법을 얻을 수 있습니다.







다음 단계 : 유지

전환 분석 없이는 웹 사이트 전환을 개선하려는 노력이 실제로 효과가 있는지 확인할 수 없습니다. 전환 분석을 사용하여 웹 사이트를 개선하는 방법을 잘 이해하였다면, 다음으로는 고객 유지를 위해 최적화하는 것입니다.





앰플리튜드, 컨버전