앰플리튜드
Amplitude 2025년 2월 신규 기능 업데이트 훑어보기
Team MAXONOMY ・ 2025.03.03

가이드 및 설문조사(Guides and Surveys) 기능 추가
이제 번거로운 팝업은 그만! ‘가이드 및 설문조사’ 도구로 고객 맞춤형 경험을 제공해보세요. ‘가이드 및 설문조사’ 도구는 고객이 필요한 시점에, 적절한 내용을 제공하며, 그외 불필요한 상황에서는 비활성화시킬 수 있습니다. 개인화된 온보딩 여정을 만들고, 맥락에 기반한 피드백을 수집할 수 있습니다.
- 사용 방법: Amplitude 내 왼쪽 내비게이션의 가이드 및 설문 홈페이지로 이동
- 사용 대상: 이 기능은 Plus 플랜의 추가 기능으로 제공되며, Growth 및 Enterprise 플랜에서도 선택 가능합니다.
분석 기능 업데이트
단축키로 분석 작업 가속화

이제 단축키로 더욱 빠르게 데이터를 분석할 수 있습니다. [이벤트 빠르게 선택: Shift + E], [즉시 필터링: Shift + F], [신속한 차트 저장: Shift + S] 등의 단축키 사용이 가능합니다. 또한 Enter 키를 통해 드롭다운 항목을 선택하고, Space 키로 속성 값을 토글할 수 있습니다. 자세한 단축키를 확인하고 싶으면 Shift + ?를 눌러 모든 단축키 목록을 확인하세요.
- 사용 방법: 차트 내에서 Shift + ? 키를 눌러 모든 단축키 확인
- 사용 대상: 모든 사용자
웹 실험 생성 기능 추가
마케팅 인사이트를 액션으로 손쉽게 전환하세요! 이제 Amplitude 마케팅 허브에서 직접 A/B 테스트를 생성할 수 있습니다. 이를 통해 웹 페이지의 다양한 변형을 손쉽게 생성하고, 그 결과를 측정하며, 마케팅 캠페인을 최적화할 수 있습니다. 분석과 실험을 하나의 워크플로우 내에서 연결해보세요.
- 사용 방법: 마케팅 허브(Marketing Hub) > 페이지 참여(Page engagement) > 웹 실험(Web Experiments) 생성
- 사용 대상: 모든 플랜에서 제한된 웹 실험 기능 무료 사용 가능
데이터 테이블 어트리뷰션 개선
이번 업데이트에서는 데이터 테이블의 어트리뷰션 모델에 다음 네 가지 개선이 이루어졌습니다.
- 그룹화 속성 한도 10개에서 20개로 증가하여 보다 복잡한 분석 지원
- 프룬 값(pruned values)을 별도의 그룹으로 분리하여 필터링이 결과에 영향을 주지 않도록 개선
- 시간 해상도를 12시간에서 1밀리초로 개선하여 속성 값 변화가 정확하게 캡처되도록 지원
- 최상위 속성만 어트리뷰션에 적용되도록 어트리뷰션 의미 재정의
이러한 개선 사항은 복잡한 분석을 보다 정교하게 수행할 수 있도록 도와주며, 사용자 여정을 더욱 생생하게 데이터로 반영합니다.
- 사용 방법: Amplitude 내 데이터 테이블의 열 헤더를 통해 어트리뷰션 확인
- 사용 대상: 모든 사용자
대시보드 강화
이제 대시보드를 스토리텔링 캔버스로 전환해보세요. 이번 업데이트를 통해 대시보드 내에 YouTube, Loom, Vimeo, Zoom Clips의 동영상을 임베드할 수 있게 되었습니다. 또한 이미지를 추가하여 질적 맥락을 제공하고, 인사이트를 설명하거나 사용자 피드백을 공유할 수 있습니다.
- 사용 방법: 대시보드 내에서 직접 이미지와 동영상을 추가
- 사용 대상: 모든 사용자
세션 리플레이 기능 추가
Google 태그 매니저 지원 세션 리플레이
Google 태그 매니저를 통해 세션 리플레이 기능을 사용할 수 있게 되었습니다. 단, 이 기능은 기존의 브라우저 SDK 플러그인과 다른 프로세스를 요구하므로, Google 태그 매니저를 사용한 세션 리플레이 구현법 문서를 확인하시기 바랍니다.
- 사용 방법: Google 태그 매니저를 설정하여 접근
- 사용 대상: 세션 리플레이 기능에 접근할 수 있는 모든 고객에게 제공됩니다.
데이터 및 활성화(Activation) 기능 업데이트
Amplitude 전반에서 코호트 사용
많은 사용자 요청에 부응하여, 코호트 동기화 모달을 도입했습니다. 해당 모달을 통해 차트, 실험, 가이드, 설문 등 플랫폼 전반에서 코호트를 연결하고, 모든 활성화 기능을 사용할 수 있습니다.
- 사용 방법: 코호트 → 타깃 사용자에서 확인
- 사용 대상: 모든 플랜에서 사용 가능
이벤트 스트림에서 특정 이벤트 숨기기
비활성 이벤트나 노이즈가 많은 고빈도 이벤트 등은 이벤트 스트림을 복잡하게 만들 수 있습니다. 이를 해결하기 위해, 이벤트의 가시성 드롭다운 메뉴에 “이벤트 스트림에서 숨기기” 옵션을 추가했습니다. 이번 업데이트와 함께, “Autocapture Smart Event Names” 기능을 사용할 수 있게 되었습니다. 이제 이벤트 스트림에서 Autocapture 이벤트를 처리하는 데 여러 가지 옵션을 사용할 수 있습니다. 스마트 이름을 활용하거나, 이 기능을 사용하여 특정 이벤트를 완전히 숨길 수도 있습니다.
- 사용 방법: 이벤트 페이지에서 해당 이벤트의 설정을 토글 확인
- 사용 대상: 모든 플랜에서 사용 가능
분류 체계(Taxonomy) 내 중복 이벤트 감지
레이블이 지정된 이벤트 생성 시, 동일한 정의의 이벤트나 유사한 페이지 요소를 가진 다른 이벤트가 존재하는지 확인할 수 있습니다. 중복 이벤트를 찾는 시간을 절약하고 중복 이벤트로 인한 분류 체계 혼란을 방지하는 데 도움을 줍니다.
- 사용 방법: 데이터 > 이벤트 > 레이블된 이벤트에서 “Launch Visual Labeling”을 실행하고, 오른쪽 패널에서 중복/유사 이벤트 확인
- 사용 대상: 모든 플랜에서 사용 가능
미 작동 이벤트 식별
웹사이트 변경으로 인해 더 이상 작동하지 않는 이벤트를 신속하게 확인할 수 있습니다. 레이블된 이벤트 페이지에 새로운 열과 뷰가 추가되어, 최근 이벤트가 발생하지 않은 이벤트를 한눈에 파악할 수 있습니다.
- 사용 방법: 데이터 > 이벤트 > 레이블된 이벤트 페이지의 'Recency' 열을 확인
- 사용 대상: 모든 플랜에서 사용 가능
애플 기기에 대한 디바이스 타입 감지 기능 향상
Amplitude의 Browser SDK 2.x를 사용하는 경우, 이전에 "(none)"으로 분류되던 애플 기기의 디바이스 타입이 올바르게 식별되도록 백엔드 로직을 개선했습니다. 해당 업데이트로 Mac 기기에 대해 보다 정확한 디바이스 패밀리 어트리뷰션을 제공하며, 기존 분류에는 영향을 주지 않습니다.
- 개선사항
- 애플 기기에 대한 보다 정확한 디바이스 타입 보고
- 디바이스 기반 분석 데이터 품질 향상
- 참고사항
- 이번 업데이트는 이전에 "(none)"으로 표시된 애플 기기에만 영향을 미칩니다.
- 기존 데이터는 변경되지 않으며, 새 데이터부터 올바른 디바이스 타입이 반영됩니다.
실험 기능 강화
웹 실험 원격 평가
이제 Amplitude 사용자 속성과 코호트를 활용하여 웹 실험 타겟팅이 가능해졌습니다. 실험 평가 모드를 ‘원격 평가(Remote Evaluation)’로 설정하고, 안티 플리커(anti-flicker) 설정을 선택하면 원하는 코호트를 타겟팅하여 웹 경험을 개인화할 수 있습니다.
- 사용 방법: 웹 실험 내 타겟팅 설정에서 원격 사용자 속성과 코호트를 업데이트하세요.
- 사용 대상: Web Experiment Growth 및 Web Experiment Enterprise 고객에게 제공
웹 실험 오버레이 내비게이션 모드
사용자의 오랜 요청을 반영하여, 이제 웹 실험의 시각적 편집기에서 여러 페이지를 자유롭게 탐색할 수 있게 되었습니다. 이 업데이트로 다중 페이지 실험 설정을 보다 직관적이고 효율적으로 가능합니다.
- 사용 방법: 웹 실험 오버레이 내, 시각적 실험 편집기를 통해 사용
마치며
이번 업데이트 중 어떤 기능이 가장 마음에 드시나요? 지금 바로 Amplitude에 로그인하여 새로운 기능을 확인해보세요.

팀맥소노미
YOUR DIGITAL MARKETING HERO
비즈니스 성장을 위한 최적의 솔루션과 무료 데모 시연, 활용 시나리오를 제안 받아보세요
24시간 프리미엄 열람권 받기
관련 글 보기
데이터 기반 UX 분석 개념과 방법 🎨
데이터 기반 UX 분석이란?User experience(UX) 분석은 데이터를 사용하여 사용자의 경험을 측정하고, 인사이트를 얻어 유저 경험을 개선하는 과정을 말합니다. 일반적으로 앱, 게임, 웹사이트, 소프트웨어 같은 종류의 제품에 적용되죠.UX 분석에 사용할 수 있는 데이터는 다양합니다. 앱이나 웹사이트에서 보내는 시간, 클릭하는 요소, 가장 많이 사용하는 기능, 구매한 내역 등 거의 대부분의 요소가 가능하죠. 심지어 '행동의 부재'도 분석 대상이 될 수 있는데요. 예를 들어 사용자가 장바구니에 담은 물건을 구매하지 않았거나, 링크 위에 커서를 올려놓았지만 클릭하지 않은 것도 UX분석의 대상이 될 수 있습니다.가계부 관리를 하고자 하는 사람 A가 있고, 우리는 가계부 앱을 서비스하는 기업이라고 가정해 봅시다. 우리는 A가 가계부 앱을 검색하고 우리 앱을 다운로드하고, 체험판에 가입하고, 은행 계좌나 신용카드와 같은 정보를 연동하기를 원할 것입니다. 그리고 체험판이 끝나면 유료 구독까지 전환되기를 희망하죠.이걸 '사용자 여정'이라고 부르며, 각 여정마다 사용자가 다음 여정으로 계속 진행할 수 있도록 좋은 사용자 경험을 제공해야 할 것입니다. 만약 여정을 완수하지 못하는 사용자가 있다면, UX 분석을 통해 어디서, 왜 이탈했는지 이해하고 궁극적으로 미래에 사용자 경험을 어떻게 개선할 수 있을지 힌트를 얻을 수 있습니다.UX 분석 대상구체적으로 어떤 데이터를 분석하고 지표를 측정할지는 제품이나 상황에 따라 천차만별입니다. 그렇기 때문에 이번 포스팅에선 비즈니스 의사결정까지도 활용할 수 있는 굵직한 주요 UX 데이터 지표를 중심으로 설명드리겠습니다. 해당 지표를 기반으로 어떤 최적화된 지표를 측정해볼 수 있을지 고민해보면 좋을 것 같습니다.응답 시간: 응답 시간은 페이지나 앱이 얼마나 빠르게 로딩되는지에 대한 지표입니다. 우리 생각보다 사용자들은 로드되는 시간을 오래 기다리지 않습니다. 몇 초만 버벅이면 바로 이탈하죠.신규 및 재방문자 수: 신규 및 재방문자 수는 얼마나 효과적으로 사용자를 유치(Acquisition)하고 유지(Retention)하는지에 대한 지표입니다. 신규 방문자 수가 증가하지 않는다면, 마케팅 전략을 다시 검토해야 하며, 재방문자 비율이 낮다면, 제품 경험을 검토해야 합니다. 재방문자 비율에 문제가 있는 경우에는 리텐션 분석을 더 깊게 수행하여 재방문한 사용자와 이탈한 사용자 간의 행동 차이를 확인하는 것이 좋습니다.세션 길이: 세션 길이는 사용자가 제품을 얼마나 오래 사용하는지를 측정하는 지표입니다. 세션 시간이 길수록 좋을 것 같지만, 제품에 따라 그렇지 않을 수도 있습니다. 만약 뉴스 앱이라면 긴 세션 시간은 사용자가 적극적으로 참여하고 있다는 긍정적인 신호일 가능성이 높죠. 반면, 현금 송금 앱이라면 긴 세션 시간은 사용자가 원하는 작업을 수행하는 데 어려움을 겪고 있다는 신호일 수 있습니다. 이처럼 세션 길이 지표는 제품의 특성에 따라 사용자 경험을 유연하게 판단해야 합니다.세션당 페이지 수: 세션당 페이지 수는 한 세션 동안 방문하는 총 페이지 수를 의미합니다. 세션 길이와 마찬가지로 많은 페이지를 방문하는 것이 좋을 수도 있고 나쁠 수도 있습니다. 사용자가 제품에 깊게 몰입하여 사용하는 것일 수도 있지만, 원하는 답을 찾지 못해 이리 저리 방황하는 것일 수도 있습니다. 만약 후자라면, 더 적은 클릭으로 원하는 답을 쉽게 찾을 수 있도록 개선해야 합니다.전환율: 고객 여정의 각 여정에서 상위 여정으로 넘어가는 비율을 전환율이라고 합니다. 만약 광고 단계에서 클릭률, 즉 전환율이 높지 않다면 메시지를 조정해야 하는 등의 방법을 사용해야 합니다. 사용자가 앱을 다운로드했지만 유료 고객으로 전환되지 않는다면, 온보딩 과정을 조정하여 전환율을 높일 수 있습니다. 전환율은 사용자의 행동을 분석하고 제품 개선 방안을 찾는 데 중요한 역할을 합니다.과제 성공률과 과제 수행 시간: 제품이 사용하기 쉬운지 여부를 가장 명확하게 보여주는 지표가 바로 과제 성공률과 과제 수행 시간입니다. 여기서 말하는 '과제'는 서비스의 주요 사용 목적이나 기능을 말하는데요. 배달 앱 사용자가 음식 주문을 하려하는 데, 주문 방법을 몰라 한참을 헤매거나 주문 과정 자체가 너무 오래 걸린다면, 인내심을 잃고 앱을 이탈할 것입니다. 해당 지표를 통해서, 제품의 핵심 과제에 집중하고, 이러한 과제를 완수하는 과정을 자연스럽고 직관적이며 간단하게 만들어야 합니다.사용자 정착률(Stickiness): 정착률은 일일 평균 사용자 수(DAU)를 월간 평균 사용자 수(MAU)로 나누어 측정합니다. 이 지표는 사용자가 평균적으로 한 달에 며칠 동안 제품을 사용하는지 보여줍니다. 매일 접속하긴 바라는 게임과 같은 비즈니스에 특히 유용합니다. 하지만 모든 비즈니스에 적합한 지표는 아닙니다. 가령 비행기 예매 앱같은 경우 사용자 정착률이 크게 의미 있진 않겠죠.내비게이션 vs 검색 비율: 사용자가 제품을 탐색하는 데 검색 창에 지나치게 의존한다면, 이는 제품 디자인이 직관적이지 않다는 신호일 수 있습니다. 사용자가 최소한의 클릭으로 원하는 것을 빠르게 찾을 수 있도록 다양한 레이아웃, 구조, 구성 방식을 실험해 보아야 합니다.기능 참여율: 기능 참여율은 기능이 얼마나 자주 사용되는지를, 제품을 열어본 사용자 수로 나누어 측정한 지표입니다. 기능 참여율과 리텐션 분석을 결합하면, 특정 기능을 사용하는 사용자가 유지될 가능성이 어떤지 확인할 수 있습니다. 중요한 기능이 거의 사용되지 않는다면, 해당 기능을 더 눈에 띄게 UI를 조정할 필요가 있을 수 있습니다. 사용자에게 해당 기능을 알려주는 알림이나 이메일을 보내는 방법도 고려할 수 있겠죠.고객 이탈률: 고객 이탈률은 [(월초 고객 수) - (월말에 남아 있는 고객 수)] / (월초 고객 수) 입니다. 예를 들어, 6월 초에 100명의 고객이 있었고 6월 말에 90명의 고객이 남았다면, 이탈률은 10%가 됩니다. 고객의 충성도와 이탈을 평가하고 필요한 개선을 도출하는 데 중요한 지표입니다.UX 디자인과 데이터 분석 간의 관계UX 디자인은 단순히 제품을 예쁘게 만드는 것이 아닙니다. 제품을 자연스럽게 사용할 수 있도록 설계하고, 사용자의 기대를 뛰어넘는 결과를 제공해 그 제품에 매력을 느끼게 만드는 것이 목적입니다. 이를 위해서는 예술적 감각뿐만 아니라, 과학적인 데이터 분석과 테스트 과정이 필수적입니다. 데이터를 사용해 인사이트를 얻고 이를 바탕으로 가설을 세운 후, UX 디자인 테스트를 통해 이 가설을 증명해야 합니다.예를 들어, 운동화 회사의 제품 관리자가 재구매율이 낮다는 사실을 발견했다고 가정해 봅시다. 데이터에 따르면 대부분의 고객은 10개월마다 신발을 구매합니다. 관리자는 고객이 10개월 후에 자동 리마인더를 받으면 재구매율이 높아질 것이라고 가정합니다.이후 제품 팀은 마케팅 팀과 협력하여 이메일과 같은 메시지를 다양한 고객 그룹에 대해 A/B 테스트하여 재구매율을 높일 수 있는지 실험할 수 있습니다.UX 분석 대시보드 만들기UX 분석과 개선 과정에는 조직 전체의 의사 결정이 필요한 경우가 많습니다. 때문에 조직 내에서 원활한 정보 공유와 통일된 접근 방식이 필요합니다. 이때 필요한 것이 분석 대시보드입니다.좋은 UX 분석 대시보드는 중요한 지표들을 맨 위에 배치합니다. 일일 대시보드에는 세 가지 또는 네 가지 이상의 지표가 포함되지 않도록 하여, 대시보드 확인이 복잡하지 않도록 해야 합니다. 또한 지표는 비즈니스 목표와 직접 연결되어야 하며, 대시보드의 첫 번째 항목을 보면 비즈니스의 상태를 간략하게 확인할 수 있어야 합니다. 그 아래에는 대시보드에 다양한 시간대를 포함시켜, 즉각적으로 해결해야 할 문제와 중장기적인 데이터의 추세를 구분할 수 있는 것이 좋습니다.마치며사용자 경험은 제품 성공 또는 실패에 중요한 역할을 합니다. 사용자가 제품에 대해 느끼는 것을 파악하는 일은 데이터 분석가뿐만 아니라 조직 전체에서 이루어져야 합니다. 조직 내 모든 사람들이 해당 데이터를 활용해 사용자 행동에 대한 질문에 신속하게 답할 수 있어야 합니다. UX 분석과 대시보드의 적절한 활용은 비즈니스 성장과 제품 개선에 크게 기여할 수 있습니다. 대표적으로 Amplitude와 같은 솔루션을 이용한다면, 이런 데이터를 손 쉽게 측정하고 관리하고, 또 대시보드를 구성할 수 있습니다. UX 데이터 분석에 대해서 더 깊은 인사이트를 얻고 싶다면 맥소노미 홈페이지에 올라온 다양한 가이드북을 확인해보세요.콘텐츠 더 읽어보기리텐션 최적화 디자인 설계[세션 스케치 | 올리브영] 행동 데이터로 고객을 보다, '올리브영의 데이터 리터러시 향상부터 서비스 개선까지'Canvas Flow로 고객이 만족하는 여정 설계하기
그로스 해커의 데이터 분석 필수 솔루션: Amplitude(앰플리튜드)
“그로스 해커”, 한번쯤은 들어보셨을 단어일텐데요. 그로스 해커는 단순한 유행어가 아닙니다. 그로스 해커는 실시간으로 고객 데이터를 캡처하고 의미를 읽는 방법을 길러온, 제품과 마케팅에 모두 능숙한 인력입니다. 에어비앤비, 우버, 인스타그램, 링크드인과 같은 스타트업들이 유니콘으로 도달하기 위해 그로스 해킹을 사용해왔으나, 전통적인 일반 기업들은 아직 그로스 해킹에 큰 관심이 없는 상태입니다.성공하는 그로스 해커들은 전통적인 엔터프라이즈 비즈니스와는 전혀 다른 방식으로 고객 데이터에 접근합니다. 그들은 디지털 데이터 너머에 있는 실제 사람에 집중하고, 고객 행동을 분석하기 위해 특별히 제작된 최신 프로덕트 인텔리전스 툴을 이용하며, 고객 활성화를 위해 데이터 인사이트를 배치하고, 데이터를 팀 스포츠로 취급합니다.그로스 해커의 사고방식은 적절한 툴과 이전의 베스트 프랙티스와 결합되어, 엔터프라이즈 기업이 디지털 혁신을 실현하고 성장을 이어갈 수 있도록 청사진을 제공합니다. 이벤트 기반 데이터를 통해 고객과 공감하세요.그로스 해커는 고객 데이터에 대한 미묘한 이해를 바탕으로 어떻게 공감을 형성할 수 있을지 확인합니다. 데이터를 통해 확인한 고객의 욕구와 요구 사항에 익숙해지는 것은 더 나은 제품을 만드는데 도움이 됩니다.그로스 해킹의 기본은 데이터가 인간의 상호 작용을 위한 통로라고 여기는 사고 방식에서부터 시작합니다. 데이터를 익명의 대중이 아닌, 의미있는 개개인의 의사 표현으로 봐야 합니다. 이러한 사고 방식은 고객 데이터 안에서 행동 인사이트를 발견하고 고객과의 큰 공감을 만들어가는데 도움이 됩니다.물론, 사고 방식은 시작점일 뿐, 더 많은 것이 필요합니다. 올바른 종류의 데이터를 추적하는 것도 중요합니다. Google Analytics, Adobe와 같은 레거시 분석 솔루션은 인간 행동을 이해하는 데 도움이 되는 데이터를 잘 추적하지 않습니다. 대부분 대시보드에서 웹 활동을 추적하는데, 페이지뷰나 구매와 같은 대규모 수치를 보면 데이터 뒤에 있는 ‘개인’의 성격을 지우는 경향이 있습니다. 제품을 구매하는 주체는 페이지뷰가 아니라 사람입니다. 사람들은 “세션”에서 제품과 상호작용 하지 않습니다. 오랜 시간에 걸쳐 다양한 채널을 통해 제품과 상호 작용합니다.데이터를 통해 확인한 고객의 욕구와 요구 사항에 익숙해지는 것은더 나은 제품을 만드는데 도움이 됩니다.반면에 그로스 해커들은 이벤트 기반 데이터를 분석합니다. 이벤트 기반 데이터는 마우스를 클릭하거나 키 스트로크 및 손가락 스와이프 등의 액션이 있을 때마다 활동을 추적합니다. 이러한 이벤트를 Amplitude(앰플리튜드)와 같은 제품 인텔리전스 툴을 통해 실시간으로 분석하면, 고객의 미묘한 행동을 파악하고 니즈를 이해하는 것을 시작할 수 있습니다. 또한 이 ‘이해’는 결과적으로 더 나은 제품을 만드는 방향으로 이어집니다.Google Analytics, Adobe와 같은 레거시 분석 툴도 이벤트를 통합하기 위해 기술적으로 플랫폼을 확장했지만, 여전히 웹 페이지 중심의 분석입니다. 이러한 툴을 통해 이벤트를 추적하는 것으로는 데이터의 일부만을 확인할 수 있습니다. 고객 데이터 분석을 위해 특별히 설계된 최신 툴을 사용하세요.기존의 웹 분석 툴은 고객 행동 분석을 위해 설계되지 않았습니다. 기존의 툴은 단일 시점에서 익명의 웹 페이지 뷰를 측정하는 데는 탁월하지만 실제 사람들이 디지털 제품을 사용하는 방식과는 거리가 있습니다. 그로스 해커는 복잡한 고객 데이터를 적절하게 분석할 수 있는 툴을 사용합니다. 이러한 툴은 최소한 다음의 세 가지 요건을 충족해야 합니다.- 다양한 채널에서의 상호작용을 트래킹할 수 있는가.- 전체 소스에서 동일한 고객을 식별해내고 데이터를 통합할 수 있는가. (ID 확인)- 고객 데이터가 식별된 경우, 이 고객 데이터와 익명의 데이터를 결합할 수 있는가.세그먼트 및 프로덕트 인텔리전스 툴 Amplitude(앰플리튜드)와 같은 고객 데이터 플랫폼은(Customer Data Platform: CDP) 상기 요건들을 달성하기 위해 특별히 제작되었습니다. 예를 들어, 세그먼트는 사용자 정의 소스를 포함한 수십 개의 소스에서 이벤트 데이터를 수집합니다. 그 다음 시간이 지남에 따라 지속되는 통합 고객 프로파일을 생성합니다.또한 Amplitude(앰플리튜드)는 세그먼트의 다운 스트림에서 CDP를 통해 통합된 이벤트를 수집하는데 사용될 수 있습니다. 그 다음 리텐션, 전환 및 코호트 행동과 같은 고객 지표를 조사하기 위해 전문 기술자와 비전문 사용자 모두에게 적합한 데이터 분석을 제공합니다. Amplitude(앰플리튜드)에는 자체 ID 확인 기능과 수십 개의 데이터 소스에 대한 사전 구축된 통합 기능도 있습니다.웹 분석 혹은 일반적인 데이터 레이크가 아닌 고객 데이터 분석을 위해 특별히 제작된 툴의 장점은 사람을 염두에 두고 만들어졌다는 점입니다. 즉, ID 식별, 개인 정보 보호, 고객 라이프사이클 라포팅과 같은 고객 지향 기능을 즉시 제공합니다.그리고 이러한 툴은 이탈 가능성, 구매 성향 및 자동 세그먼트와 같은 사전 구축된 예측 속성을 계속해서 더 많이 제공합니다. 이 기능들은 복잡하고 운영 비용이 많이 드는 머신러닝 기반에서 작동하기 때문에, 큰 규모의 회사에서도 처음부터 모두 새로 구축하려면 매우 오랜 시간이 걸립니다. Amplitude(앰플리튜드)의 AutoML 기능은 고객의 행동에 따라 고객을 자동으로 모을 수 있게 합니다. 이를 통해 프로덕트 매니저와 마케터는 희망하는 사용자 분류 방식에 따라 규칙을 수동으로 생성하는 대신, 실제로 제품과 상호 작용하는 방식을 기준으로 사용자를 빠르게 그룹화 할 수 있습니다.최근 Amplitude(앰플리튜드)는 사용자가 주어진 동작을 수행할 가능성을 기준으로 머신러닝을 사용해서 사용자를 세분화하는 예측 코호트 기능도 제공하기 시작했습니다. 이러한 코호트가 마케팅 캠페인에 적용되면, 그로스 해커는 진정한 데이터 사이언티스트가 될 수 있습니다. 직접적인 효과를 위해 위해 데이터 인사이트에 신속하게 대응합니다.대시보드는 데이터 분석 결과를 시각화하고 해석하는데 유용하지만, 이것이 데이터 분석의 전부가 되어서는 안됩니다. 이를 기반으로 경영진이 의사 결정을 내리기를 기다리는 데는 몇 주 심지어는 몇 분기가 걸릴 수도 있습니다. 그 이유는 대시보드가 보편적인 방향으로만 사용자에게 안내하고 있기 때문입니다. 데이터를 분석하고 조치를 취하는 것은 사용자의 몫입니다.그로스 해커는 기존 엔터프라이즈 비즈니스와는 근본적으로 다른 방식으로고객 데이터에 접근합니다.그로스 해커에게는 기다릴 수 있는 시간 여유가 없습니다. 이들은 프로덕트 인텔리전스 툴을 통해 얻은 인사이트를 바탕으로 마케팅 및 인게이지먼트 캠페인에 직접 참여합니다. 이 과정에서 데이터를 통해 확인한 고유한 특성 및 코호트에 따라 메시징을 맞춤화할 수 있습니다. Amplitude(앰플리튜드)에는 대시 보드에서 기다릴 필요없이 실시간으로 데이터 통신을 할 수 있도록 사전에 구축 된 커넥터가 있습니다.예를 들어, 분석 결과 이탈 가능성이 높은 고객 그룹이 식별되었다면, 다음 단계는 당연히 해당 그룹에게 이메일 혹은 모바일 푸시 알림을 보내서 고객이 이탈하지 않도록 하는 것입니다. 이 메시지를 자동으로 트리거 함으로써, 그로스 해커들은 번개처럼 빠른 속도로 고객 경험을 변화시킬 수 있습니다. 데이터를 팀 스포츠로 만들어보세요.그로스 해커의 마지막 비결은 무엇일까요? 그로스 해커는 데이터를 활용하여 고객에게 서비스를 제공하는 새로운 방법을 모색하는 ‘데이터 민주주의’ 팀으로 활동하고 있습니다. 데이터는 고도의 전문 기술자들로 구성된 소규모 그룹에 국한되지 않고 그로스 해킹 프로덕트 매니저, 마케터, 디자이너도 쉽게 액세스할 수 있습니다. 누구나 스스로 데이터를 조사하여 성장 가설을 검증하고, 문제 지점을 확인하며, 고객 행동을 관할할 수 있는 액세스 권한이 있습니다.만약 데이터 전문가가 고객 인사이트의 게이트키퍼라면, 기업의 빠른 학습 및 적응 능력은 소수에게 제한된 대역폭과 전문 지식으로 인해 병목 현상이 발생할 수 있습니다. 데이터 전문가가 아닌 분들이 Google Analytics와 Adobe를 이용하여 표면적인 정보 이상의 인사이트를 확인하는 것은 매우 어렵습니다. 전문 기술자가 데이터 분석 내용을 다른 팀원에게 전달하기 위해 대시보드를 생성하는 경우, 비전문 사용자는 데이터와 상호 작용 하거나 데이터에 대한 질문을 할 수 없습니다. 해답을 얻기 위해 엔지니어링 팀에 질문을 한다고 해도, 이는 모든 사람의 업무 속도를 떨어뜨리는 결과를 가져오게 됩니다.Amplitude(앰플리튜드)와 같은 최신 분석 플랫폼은 처음부터 데이터 전문가가 아닌 사람도 사용할 수 있도록 설계되었습니다. Amplitude(앰플리튜드)의 UI는 쿼리를 작성하기 위해 자연어와 포인트 앤 클릭(point-and-click) 인터페이스를 사용합니다. 플랫폼별로 다른 용어를 사용하지 않기 때문에 eVars, sProp, goal slot ID와 같은 용어는 Amplitude(앰플리튜드)에서 볼 수 없습니다.또한 Amplitude(앰플리튜드)는 사전 제작된 광범위하고 고 부가가치의 구성하기 쉬운 다양한 차트를 제공하므로, 고객 행동을 쉽게 분석할 수 있습니다. 마지막으로 Amplitude(앰플리튜드)는 다양한 팀 협업 기능을 제공하여 그로스 팀이 차트에 의견을 추가하고, 분석을 퍼블리싱 하며, 툴 내에서 데이터에 대해 논의할 수 있도록 지원합니다.이렇듯 진정한 ‘데이터 민주주의’를 통해 그로스 해킹 조직은 피드백 주기를 획기적으로 단축할 수 있습니다. 또한 이를 통해 기존의 경쟁 기업들 보다 훨씬 더 높은 성장률을 달성할 수 있습니다. 그로스 해커가 될 준비가 끝났습니다!그렇다면, Google Analytics, Adobe Analytics, 데이터 웨어하우스, 데이터 레이크 및 이전의 대시보드와 같은 기존 데이터 분석 툴을 폐기해야 할까요? 아닙니다. 이러한 툴은 웹 분석과 데이터 스토리지, 시각화 등의 용도로만 사용하면 됩니다. 신속한 실험과 최적화를 통한 가파른 성장을 원한다면, Amplitude(앰플리튜드)와 같은 최신 프로덕트 인텔리전스 툴을 사용하여 원하는 결과를 얻을 수 있습니다. 그로스 해커의 고객 공감 능력, 독창성과 결합하면, 여러분도 빠르게 우상향 하는 성장 그래프를 확인할 수 있습니다.
A/B테스트 개념과 데이터 분석 방법🔍
A/B 테스트는 두 가지 혹은 그 이상의 서로 다른 버전(Variant)을 비교하여 어느 쪽이 더 나은 성과를 내는지 판단하는 실험 기법입니다.
고객 Lifecycle 분석의 핵심 열쇠 "행동 코호트"
Amplitude의 행동 코호트는 충성 고객을 식별하고 유치하여 고객 라이프 사이클의 세 가지 중요한 단계 (획득, 참여, 유지)를 보다 효율적으로 만들도록 설계되었습니다.고객은 우리 사이트를 방문할 때마다 매번 동일한 목적을 가지지 않습니다. 때로는 구매를 위해서, 때로는 단순히 가격 탐색을 위해서, 혹은 콘텐츠 소비를 위해서 방문합니다. 따라서 우리는 개개인의 목적을 그룹핑하여 그들의 변화를 파악하고 사전에 대비해야 합니다. Amplitude(앰플리튜드) 내에서는 행동 집단을 만들어 이러한 행동 변화를 설명하고 계획할 수 있습니다. 이렇게 하면 이전에 설명하지 않았던 다른 숨겨진 사용자 페르소나를 파악할 수 있습니다. 고객 기반의 다양한 세그먼트를 정의하고 분석하여 라이프 사이클의 여러 부분에서 고객에게 동기를 부여하는 요소를 배우고 이해할 수 있습니다. 고객 라이프 사이클이란 무엇일까요?고객 라이프 사이클은 제품, 웹 사이트, 애플리케이션 또는 지원 시스템에 참여하기 전, 도중 및 후에 사용자가 따르는 경로입니다. 이 수명주기는 사용자가 가입하기 훨씬 전에 시작되며 고객이 행여나 흥미를 잃은 후에도 계속됩니다.고객 라이프 사이클의 주요 이정표에는 획득, 참여 및 유지가 포함됩니다. 이 세 단계에는 인식, 전환, 구매, 활성화, 갱신 및 추천이라는 점진적인 단계가 있습니다.인식은 고객 라이프 사이클의 첫 번째 단계입니다. 여기에서 잠재 고객이 제품을 발견하고 알게 됩니다.전환은 잠재 고객이 귀사의 솔루션을 경쟁 업체와 차별화하는 포인트로 탐색을 진행하는 지점입니다. 궁극적인 목표는 고객이 자신의 요구 사항을 가장 잘 충족시킬 수 있다고 느끼도록 해야 합니다.구매 단계는 제품의 선택 및 구매를 포함합니다. 제품 마케팅 전략과 코호트의 참여가 주요합니다.활성화 단계는 사용자가 첫 긍정적 인상을 유지하도록 하는 게 매우 중요합니다.리텐션은 고객이 만족도를 명확하게 나타내는 단계입니다. 그들은 그들이 당신의 플랫폼을 가치 있게 생각한다는 것을 보여줌으로써 (사용한 돈, 소요 시간, 기간 및 참여 깊이를 통해) 유지는 또한 고객 평생 가치를 높일 수 있는 가장 큰 부분입니다. 갱신 : 사용자가 비즈니스 약관을 갱신하거나 추가 제품을 구매하거나 구독을 모두 업그레이드하는 부분입니다.추천 : 사용자가 친구 및 동료에게 제품을 홍보하거나 추천 프로그램에 적극적으로 참여할 때 발생합니다.사용자는 이러한 단계 중 어느 단계에서든 자연스럽게 고객 라이프 사이클에서 벗어날 수 있습니다. Amplitude(앰플리튜드)와 같은 제품 분석을 통해 행동 코호트를 활용함으로써 제품 팀은 고객의 행동 주기를 파악하여 기존 메시징, 채널 및 경험을 식별하고 활용할 수 있습니다.그렇다면 이러한 코호트를 추출하는데 주요한 진단 질문 예제를 살펴볼게요.코호트 추출 시, 주요 진단 질문이렇게 준비된 질문 중에서, "얼마나 많은 고객이 Appboy(=Braze) email을 통해 인해 신규 가입을 했는가?"라는 질문에 대해 가정해보고, 코호트를 추출한다면 다음과 같은 구성으로 쉽고 간단하게 Amplitude(앰플리튜드)를 통해서 코호트를 추출할 수 있습니다.고객 라이프 사이클을 정기적으로 재점검하세요.고객 라이프 사이클은 사용자의 우선순위와 선호도가 시간이 지남에 따라 진화함으로 제품 전략 또한 지속적으로 진화해야 합니다. 사용자가 주요 workflow를 계속 진행할 수 있도록 하려면 고객 라이프 사이클의 각 단계에서 대상 행동 집단을 일관되게 검토하는 것이 중요합니다. 행동 코호트를 정기적으로 검토하면 성공적이고 맞춤화 된 고객 라이프 사이클을 위해 고관여 고가치 고객을 계속 확보, 참여 및 유지할 수 있습니다.





